Public domain

 

The data sets available for different papers can be accessed through below links:

Chickpea

Barmukh et al. (2021). Construction of high-density genetic map  and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS ONE. Data Link
Roorkiwal et al. (2018) Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Sci Rep. 8(1):11701. doi: 10.1038/s41598-018-30027-2. Data Link
Roorkiwal et al. (2016) Genome-enabled prediction models for yield related traits in chickpea. Front Plant Sci. 7:1666. Data Link
Nayak et al. (2010), Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical and Applied Genetics 120(7): 1415–1441. Data Link
Gujaria et al. (2010) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.), Theoretical and Applied Genetics 122(8): 1577–1589. Data Link
Thudi et al. (2011) Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.), PLoS One 6(11): e27275 Data Link
Hiremath et al. (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes, Plant Biotechnology Journal 10(6): 716–732 Data Link
Varshney et al. (2013) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.), Theoretical and Applied Genetics  Data Link
Roorkiwal et al (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers Data Link

 

Groundnut

Khera, P., Pandey, M.K., Mallikarjuna, N. (2018) Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.). Mol Genet Genomics 294, 365–378. https://doi.org/10.1007/s00438-018-1511-9

Data Link

Vishwakarma MK et. al (2017) Genome-wide discovery and deployment of insertions and deletions markers provided greater insights on species, genomes, and sections relationships in the genus Arachis. Plant Sci. 8:2064. doi: 10.3389/fpls.2017.02064

Data Link

Pandey, M., Agarwal, G., Kale, S. et al. (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ Array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci. Rep. 7, 40577; doi: 10.1038/srep40577

Data Link

Manish K. Pandey et. al (2017) QTL‐seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal 15, pp. 927–941

Data Link

Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, et al. (2014) Genome wide association studies for 50 agronomic traits in peanut using the ‘Reference Set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 9(8): e105228. doi:10.1371/journal.pone.0105228

Data Link

Training population DArT genotyping data in Groundnut (This dataset is under curation and analysis and will be provided open access in due course)

Data Link

Training population DArT sequencing genotyping data in groundnut (This dataset is under curation and analysis and will be provided open access in due course)

Data Link

 

Pigeonpea

Yadav, P. et.  al (2019) An “Axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genomics 20, 235 (2019). https://doi.org/10.1186/s12864-019-5595-3 Data Link
Obala, J. at. al (2019) Development of sequence-based markers for seed protein content in pigeonpea. Mol Genet Genomics 294, 57–68 (2019). https://doi.org/10.1007/s00438-018-1484-8 Data Link
Bhatnagar-Mathur, P et. al (2018) A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. Plant Mol Biol 97, 131–147 (2018). https://doi.org/10.1007/s11103-018-0728-7 Data Link
Saxena, R.K., Patel, K., Sameer Kumar, C.V. et al. (2018) Molecular mapping and inheritance of restoration of fertility (Rf) in A4 hybrid system in pigeonpea (Cajanus cajan (L.) Millsp.). Theor Appl Genet 131, 1605–1614 (2018). https://doi.org/10.1007/s00122-018-3101-y Data Link
Saxena, R.K. et. al (2018) Development and application of high-density Axiom Cajanus SNP Array with 56K SNPs to understand the genome architecture of released cultivars and founder genotypes. Plant Genome 11:180005. doi: 10.3835/plantgenome2018.01.0005 Data Link
Saxena, R.K., Kale, S.M., Kumar, V. et al. (2017) Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeonpea. Sci Rep 7, 1813 (2017). https://doi.org/10.1038/s41598-017-01535-4 Data Link
Varshney, R., Saxena, R., Upadhyaya, H. et al. (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet 49, 1082–1088 (2017). https://doi.org/10.1038/ng.3872 Data Link
Saxena, R.K. et. al (2017) Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for fusarium wilt resistance in pigeonpea. Sci Rep 7, 1911 (2017). https://doi.org/10.1038/s41598-017-01537-2 Data Link
Lekha T. Pazhamala et. al (2017) Gene expression atlas of pigeonpea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. Journal of Experimental Botany, Volume 68, Issue 8, 1 April 2017, Pages 2037–2054, https://doi.org/10.1093/jxb/erx010 Data Link
Bohra A et. al (2017) New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea [Cajanus cajan (L.) Millspaugh]. Front. Plant Sci. 8:377.doi: 10.3389/fpls.2017.00377 Data Link
Vikas K. Singh et al. (2017) Indel-seq: a fast-forward genetics approach for identification of trait-associated putative candidate genomic regions and its application in pigeonpea (Cajanus cajan). Plant Biotechnology Journal (2017) 15, pp. 906–914 doi: 10.1111/pbi.12685 Data Link
Vikas K. Singh et al. (2016) Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnology Journal (2016) 14, pp. 1183–1194 doi: 10.1111/pbi.12470 Data Link
Vinay Kumar et al (2016) First‐generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnology Journal (2016) 14, pp. 1673–1681 doi: 10.1111/pbi.12528 Data Link
Williams, A.H. et. al (2016) Characterization and mapping of Dt1 locus which co‑segregates with CcTFL1 for growth habit in pigeonpea. BMC Genomics 17, 191 (2016). https://doi.org/10.1186/s12864-016-2486-8 Data Link
Williams, A.H. et. al (2016) Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 17, 191 (2016). https://doi.org/10.1186/s12864-016-2486-8 Data Link
Pazhamala LT et. al (2016) Deciphering transcriptional programming during pod and seed development using RNA-Seq in pigeonpea (Cajanus cajan). PLoS ONE 11(10): e0164959. https://doi.org/10.1371/journal.pone.0164959 Data Link
Sinha P. et. al (2015) Identification and validation of selected universal stress protein domain containing drought- responsive genes in pigeonpea (Cajanus cajan L.). Front. Plant Sci. 6:1065. doi: 10.3389/fpls.2015.01065 Data Link
Sinha P et. al (2015) Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under drought stress conditions. PLoS ONE 10(4): e0122847. https://doi.org/10.1371/journal.pone.0122847 Data Link
P Sinha et. al (2015) Association of nad7a gene with cytoplasmic male sterility in pigeonpea. The Plant Genome 8 doi: 10.3835/plantgenome2014.11.0084 Data Link
Khera, P. et. al (2015) Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeonpea (Cajanus cajan L.). Euphytica 206, 737–746 (2015). https://doi.org/10.1007/s10681-015-1504-2 Data Link
Sinha P. et. al (2015) Selection and validation of housekeeping genes as reference for gene expression studies in pigeonpea (Cajanus cajan) under heat and salt stress conditions. Front. Plant Sci. 6:1071. doi: 10.3389/fpls.2015.01071 Data Link
Saxena RK et. al (2014) Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9(2): e88568. doi:10.1371/journal.pone.0088568. PLoS ONE 9(2): e88568. doi:10.1371/journal.pone.0088568 Data Link
Mir, R.R. et. al (2014) Candidate gene analysis for determinacy in pigeonpea  (Cajanus spp.). Theor Appl Genet 127, 2663–2678 (2014). https://doi.org/10.1007/s00122-014-2406-8 Data Link
Reyazul Rouf Mir et. al (2013) Whole‐genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.). Plant Breeding 132(5) DOI: 10.1111/j.1439-0523.2012.02009.x Data Link
Reetu Tuteja at. al (2013) Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes. DNA Research, Volume 20, Issue 5, October 2013, Pages 485–495, https://doi.org/10.1093/dnares/dst025 Data Link
Roorkiwal, M. et. al (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6. doi:10.3835/plantgenome2013.05.0017 Data Link
Kudapa et al. (2012) A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using sanger and second-generation sequencing platforms. Molecular Plant, Vol 5, pp 1–9, 5 1020–1028 Data Link
Bohra, A. et. al (2012) An intra-specific consensus genetic map of pigeonpea [Cajanus cajan (L.) Millspaugh] derived from six mapping populations. Theor Appl Genet 125, 1325–1338 (2012). https://doi.org/10.1007/s00122-012-1916-5 Data Link
Varshney, R. et. al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30, 83–89 (2012). https://doi.org/10.1038/nbt.2022 Data Link
Rachit K. Saxena et. al (2012) Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeonpea and comparative mapping in legumes. DNA Research, Volume 19, Issue 6, December 2012, Pages 449–461, https://doi.org/10.1093/dnares/dss025 Data Link
Saxena, R.K., Cui, X., Thakur, V. et al (2011) Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea (Cajanus spp.). Funct Integr Genomics 11, 651–657 (2011). https://doi.org/10.1007/s10142-011-0227-2 Data Link
Bohra, A. et. al (2011) Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.). BMC Plant Biol 11, 56 (2011). https://doi.org/10.1186/1471-2229-11-56 Data Link
Yang, S.Y., Saxena, R.K., Kulwal, P.L. et. al (2011) The first genetic map of pigeon pea based on diversity arrays technology (DArT) markers. J Genet 90, 103–109 (2011). https://doi.org/10.1007/s12041-011-0050 Data Link
Saxena, R.K. et. al (2010) Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]. Mol Breeding 26, 371–380 (2010). https://doi.org/10.1007/s11032-010-9459-4 Data Link

 

 

Visit Us On FacebookVisit Us On TwitterVisit Us On Youtube