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Abstract
With an aim of enhancing drought tolerance using a marker-assisted backcrossing

(MABC) approach, we introgressed the “QTL-hotspot” region from ICC 4958 acces-

sion that harbors quantitative trait loci (QTLs) for several drought-tolerance related

traits into three elite Indian chickpea (Cicer arietinum L.) cultivars: Pusa 372, Pusa

362, and DCP 92-3. Of eight simple sequence repeat (SSR) markers in the QTL-
hotspot region, two to three polymorphic markers were used for foreground selection

with respective cross-combinations. A total of 47, 53, and 46 SSRs were used for

background selection in case of introgression lines (ILs) developed in genetic back-

grounds of Pusa 372, Pusa 362, and DCP 92-3, respectively. In total, 61 ILs (20

BC3F3 in Pusa 372; 20 BC2F3 in Pusa 362, and 21 BC3F3 in DCP 92-3), with >90%

recurrent parent genome recovery were developed. Six improved lines in different

genetic backgrounds (e.g. BGM 10216 in Pusa 372; BG 3097 and BG 4005 in Pusa

362; IPC(L4-14), IPC(L4-16), and IPC(L19-1) in DCP 92-3) showed better perfor-

mance than their respective recurrent parents. BGM 10216, with 16% yield gain over

Pusa 372, has been released as Pusa Chickpea 10216 by the Central Sub-Committees

on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Min-

istry of Agriculture and Farmers Welfare, Government of India, for commercial cul-

tivation in India. In summary, this study reports introgression of the QTL-hotspot for
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enhancing yield under rainfed conditions, development of several introgression lines,

and release of Pusa Chickpea 10216 developed through molecular breeding in India.

1 INTRODUCTION

Chickpea (Cicer arietinum L.) is a cool-season food legume

cultivated on residual soil moisture in southern Asia and

sub-Saharan Africa. Being a rich source of protein, fiber,

and other mineral nutrients, it is important for global nutri-

tional and food security. Southeastern Turkey is considered

the center of origin of chickpea and after its domestication

in the Middle East, chickpea has migrated to the Mediter-

ranean region, India, and Ethiopia (Ladizinsky, 1975; van der

Maesen, 1987). Further, in recent years, an increase in culti-

vated area (17.81 million ha) and production (17.19 million

tonnes) has been evidenced (FAOSTAT, 2019). In the case of

India, the largest producer and consumer, chickpea production

increased from 3.86 to 11.23 million tonnes between 2000–

2001 to 2017–2018 (Dixit, Srivastava, & Singh, 2019). Mad-

hya Pradesh, Maharashtra, Rajasthan, Karnataka, and Andhra

Pradesh are major chickpea growing states in India. Abiotic

and biotic stresses hamper chickpea production, especially ter-

minal drought or end-season drought has alone been reported

to cause >50% yield losses (Ahmad, Gaur, & Croser, 2005).

Globally, the frequency of occurrence and severity of drought

is predicted to increase in the climate change scenario (Car-

rão, Naumann, & Barbosa, 2018). In India, during the last

five decades, drought has been reported to occur at least once

in every 3 yr (Mishra, Singh, & Desai, 2009, United Nations

Office for Disaster Risk Reduction, 2009). In the case of cen-

tral and southern India, where the occurrence of drought is

more frequent, to mitigate the adverse effects of drought, the

chickpea research community has leveraged drought escape

and drought avoidance mechanisms (Berger, Palta, & Vadez,

2016; Gaur et al., 2019). According to the Vision 2050 doc-

ument of Indian Council of Agricultural Research (ICAR)–

Indian Institute of Pulses Research (IIPR), about 16–17.5 mil-

lion tonnes of chickpea needs to be produced by 2050 from

an area of about 10.5 million ha with average productivity of

1.5–1.7 t ha−1 (Dixit et al., 2019; https://iipr.icar.gov.

in/pdf/vision_250715.pdf). However, to achieve this self-

sufficiency, deeper understanding of genetics of drought tol-

erance and developing the drought-tolerant chickpea cultivars

is required.

Drought being a complex trait, earlier efforts to under-

stand the genetics of the trait had a major focus on mor-

phological, biochemical, and physiological traits associated

that contribute to drought tolerance (Gunes et al., 2006;

Mafakheri, Siosemardeh, Bahramnejad, Struik, & Sohrabi,

2010; Purushothaman, Krishnamurthy, Upadhyaya, Vadez, &

Varshney, 2016; Upadhyaya et al., 2012; Varshney, Tuberosa,

& Tardieu, 2018). The role of traits like transpiration effi-

ciency and carban isotope discrimination in mitigating termi-

nal drought was also reported (Kashiwagi et al., 2005). In a

recent study, conservative water use benefitting seed yield of

chickpea under terminal drought conditions has been reported

(Pang, Turner, Du, Colmer, & Siddique, 2017). The traits

of relevance and scope for improving yield under drought

has also been presented (Kashiwagi et al., 2013, 2015). Root

traits, especially root length density (RLD [g cm−3]) was

reported to play a key role in mitigating the effects of drought

mailto:r.k.varshney@cgiar.org
https://iipr.icar.gov.in/pdf/vision_250715.pdf
https://iipr.icar.gov.in/pdf/vision_250715.pdf
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by studying the root system architecture and its plasticity in

chickpea germplasm lines (Kashiwagi, Krishnamurthy, Gaur,

Chandra, & Upadhyaya, 2008). Anatomical studies on chick-

pea root system showed moderate xylem passage (number of

xylem vessels × average vessel diameter) per root indicating

that chickpea is capable of absorbing water moderately under

drought conditions (Purushothaman et al., 2013). Besides pro-

fuse RLD at surface soil depths, root dry weight at deeper

soil layers and high root/shoot ratio was proposed to be the

best selection strategy for yield under terminal drought con-

ditions in chickpea (Purushothaman, Krishnamurthy, Upad-

hyaya, Vadez, & Varshney, 2017).

During the last two decades, the genetic dissection of sev-

eral complex traits has greatly improved as a result of the

genomics revolution (Roorkiwal et al., 2020). Draft genome

(Varshney et al., 2013b) and sequencing of >400 germplasm

accessions (Thudi et al., 2016a, 2016b; Varshney et al., 2019)

provided several thousands of SSR markers and millions of

single nucleotide polymorphism (SNP) markers for trait dis-

section and their use in chickpea breeding programs. For

instance, several high-density genetic maps have been devel-

oped (Deokar, Sagi, Daba, & Tar’an, 2019; Roorkiwal et al.,

2018; Thudi et al., 2011) and several traits, including drought

tolerance, have been investigated at molecular level (Push-

pavalli et al., 2015; Sab et al., 2020; Sivasakthi et al., 2018;

Vadez et al., 2012; Varshney et al., 2014a). Efforts were also

made to understand the genes involved in drought tolerance

through transcriptomic studies (Mantri, Ford, Coram, & Pang,

2007; Mashaki et al., 2018; Varshney et al., 2009). Although

several studies reported QTLs for drought-tolerance related

traits (Hamwieh, Imtiaz, & Malhotra, 2013; Rehman, Mal-

hotra, Bett, Bueckert, & Warkentin, 2011), the QTL-hotspot
genomic region reported by Varshney et al. (2014a) explained

the major phenotypic variation (>50%) for drought tolerance.

Further, using different genotyping approaches the QTL-
hotspot was fine mapped and genes present in this genomic

region have been reported (Jaganathan et al., 2015; Kale

et al., 2015). In addition, genome-wide markers associated

with drought tolerance and mid-reproductive stage canopy

temperature depression were also reported (Li et al., 2018;

Purushothaman et al., 2015; Thudi et al., 2014a; Varshney

et al., 2019).

Marker-assisted backcrossing (MABC) breeding has been

successfully deployed for improving biotic, abiotic, and

nutrition related traits in several crops (Kang et al., 2019;

Oladosu et al., 2020; Prasanna et al., 2020; Singh, Sharma,

Varshney, Sharma, & Singh, 2008; Thudi et al., 2014b)

including legumes (Bohra, Saxena, Varshney, & Saxena,

2020; Pandey et al., 2020; Roorkiwal et al., 2020; Varshney,

2016). In the case of chickpea, superior lines with enhanced

drought tolerance (Varshney et al., 2013a) and resistance

Core Ideas
∙ Sixty-one backcross progenies with >90% recur-

rent parent genome recovery were developed.

∙ Six superior lines with enhanced drought tolerance

and yield performance were nominated for national

yield trials in India.

∙ Pusa Chickpea 10216, the first molecular breeding

variety for drought tolerance, was released in India.

to Fusarium wilt and Ascochyta blight have been reported

using the MABC approach (Mannur et al., 2019; Pratap

et al., 2017; Varshney et al., 2014b). Fusarium wilt resistant

variety MABC-WR-SA1, also called Super Annigeri 1, with

7% more yield potential than Annigeri 1 (Mannur et al.,

2019) has also been released for commercial cultivation

in India by Central Sub-Committees on Crop Standards,

Notification and Release of Varieties of Agricultural Crops,

Ministry of Agriculture and Farmers Welfare, Government of

India.

The present study reports the development of 61 supe-

rior lines with higher seed yield and enhanced drought toler-

ance in three genetic backgrounds, namely Pusa 372 and Pusa

362 at ICAR–Indian Agricultural Research Institute (IARI)

and DCP 92-3 at ICAR–IIPR in collaboration with Inter-

national Crops Research Institute for the Semi-Arid Trop-

ics (ICRISAT). We also report the release of Pusa Chickpea

10216, a molecular breeding variety with enhanced drought

tolerance and increased yield under rainfed conditions in

India. Our study confirms that the introgression of the QTL-
hotspot region enhances drought tolerance and yield irrespec-

tive of the genetic backgrounds.

2 MATERIALS AND METHODS

2.1 Selection of donor and recipient parents

With an aim of enhancing the drought tolerance in elite cul-

tivars, the MABC approach was adopted independently at

ICAR–IARI and ICAR–IIPR. For achieving this, ICC 4958

(http://oar.icrisat.org/540/1/PMD_33.pdf) was used as donor

parent to introgress the QTL-hotspot into three elite cultivars

namely Pusa 372, Pusa 362, and DCP 92-3. Donor ICC 4958

is a landrace collected from Jabalpur, Madhya Pradesh, India,

in 1973. It is used as a drought-tolerant donor parent that pro-

duces high yields in short-duration, terminal-drought environ-

ments regions.

http://oar.icrisat.org/540/1/PMD_33.pdf
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F I G U R E 1 Marker-assisted backcrossing (MABC) scheme for introgression of the “QTL-hotspot” genomic region in Pusa 372 at ICAR–IARI.

(a) Details of the MABC scheme adopted, (b) MABC line showing increased seed size, (c) One introgression line in the field

2.2 Markers for foreground and
background selection

Initially, eight SSR markers (TAA170, ICCM0249, GA24,

STMS11, NCPGR21, NCPGR127, GA11, and TR11) in the

QTL-hotspot region (Varshney et al., 2014a) were used for

parental polymorphism analysis on three selected recipient

parents (Pusa 362, Pusa 372, and DCP 92-3) and donor par-

ent (ICC 4958) for possible use in foreground selection. Poly-

merase chain reaction (PCR) for all markers as performed in

5-μl reaction volume as described earlier (Varshney et al.,

2013a). The PCR amplicons were either resolved on 1.2%

agarose gel or using ABI 3730 (Applied Biosystems). For

foreground selection, polymorphic markers with donor and

recipient cross-combinations from the QTL-hotspot genomic

region were used (Supplemental Table S1). Based on ear-

lier studies, a set of 346 highly polymorphic SSR mark-

ers (Nayak et al., 2010; Thudi et al., 2011; Varshney et al.,

2014a) were tested for parental polymorphism among donor

and recipient parents for possible use in background selection

at the Center of Excellence in Genomics and Systems Biology

(cegsb.icrisat.org), ICRISAT. Polymorphic markers identified

for each donor and recipient parent cross-combination were

used for background selection (Supplemental Table S2). The

percentage of recurrent parent genome (RPG) recovery was

calculated as described earlier (Mannur et al., 2019).

2.3 Introgression of the QTL-hotspot
genomic region into three genetic backgrounds

The QTL-hotspot region was introgressed independently into

the chosen recipient parents employing the MABC approach.

At ICAR–IARI, a set of 20 BC3F3 lines were developed by

crossing Pusa 372 with ICC 4958 followed by three back-

crossing and two subsequent selfing generations (Figure 1).

Similarly, 20 BC2F3 lines were developed by crossing Pusa

362 with ICC 4958, also at ICAR–IARI followed by two back-

crossing and two subsequent selfing generations (Figure 2).

Similarly, 21 BC3F3 lines were developed at ICAR–IIPR by

crossing DCP 92-3 with ICC 4958 followed by three back-

crossing and two subsequent selfing generations (Figure 3).

2.4 Phenotyping of MABC introgression
lines

A set of selected 20 BC3F3 lines in the genetic background

of Pusa 372 along with the donor and recipient parents were
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F I G U R E 2 Marker-assisted backcrossing (MABC) scheme for introgression of the “QTL-hotspot” genomic region in Pusa 362 at ICAR–IARI.

(a) Details of the MABC scheme adopted, (b) One MABC line showing higher root biomass compared with the recurrent (Pusa 362) and donor (ICC

4958) genotypes, (c) MABC lines showing higher root length compared with the recurrent (the left most) and donor (the last two lines on right side)

parents

evaluated in two-row plots of 2-m row length in the rain-out

shelter for the rainfed experiment. The ILs were phenotyped

for yield-contributing traits, that is, plant height (PHT [cm]),

days to 50% flowering (DF, (d)), days to maturity (DM, (d)),

pods per plant (PPP), 100-seed weight (100SDW [g]), and

seed yield per plot (YLD [g m−2]) at the experimental farm

of ICAR–IARI, New Delhi (28.6139˚ N, 77.2090˚ E) dur-

ing the year 2016–2017. The data were taken on five single

plants and averaged. Soil moisture was 40% available at pod

formation. Based on the yield performance, the superior line

Pusa 372_IL12 designated as BGM 10216 was nominated for

national trials under ICAR–All-India Coordinated Research

Project (AICRP) on Chickpea. The superior line was evalu-

ated along with the donor and recipient parents in different

locations in advanced varietal trial (AVT) 1 and AVT2 during

2017–2018 and 2018–2019, respectively.

Another set of 20 BC2F3 lines in the genetic background

of Pusa 362 along with donor (ICC 4958) and recipient par-

ents were phenotyped for root traits, phenological traits, and

yield-related traits at the experimental farm of ICAR–IARI,

New Delhi, during the year 2015–2016. Randomized com-

plete block design with three replications under rainfed envi-

ronment was conducted following all recommended cultural

and agronomic practices. Each genotype was planted in a four

-row plot of 5-m length with 10 and 30 cm between plants and

rows, respectively. Root traits, that is, root dry weight (RDW

[g]), root length (RL [cm]), root surface area (RSA [mm2]),

and specific root length (SRL [cm g−1]), were recorded as

described earlier (Varshney et al., 2014a). Phenological traits

and yield-related traits include PHT, DF, DM, PPP, biomass

(g), harvest index (%), and YLD.

A total of 21 BC3F3 lines along with recurrent (DCP

92-3) and donor (ICC 4958) parents were phenotyped

under water-stress conditions at ICAR–IIPR, Kanpur, India

(26˚26′59.7228′′ N, 80˚ 19′54.7356′′ E) during November to

April 2015–2016. Random block design with plot size 4 × 0.3

m (1.2 m2) in three replications and four blocks within repli-

cation were adopted for conducting the experiment. Approx-

imately 40 seeds were maintained per row and recommended

crop management practices were followed at the experimental

location. Data were collected on plot basis on DF, DM, pri-

mary branch, secondary branch, tertiary branch, YLD, PPP,

PHT, and 100SDW. The three best performing BC3F3 lines—

IPC(L4-14), IPC(L4-16), and IPC(L19-1)—were selected

based on yield and other yield-attributing agronomic traits

under moisture stress and further phenotyped under water-

stress and non-stress conditions during November to April

2016–2017. The moisture stress was maintained depending

on the rainfall throughout the cropping season and grain

yield data was recorded for water stress and nonstress con-

ditions and lines with lower drought susceptible index were

identified.
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F I G U R E 3 Marker -assisted backcrossing (MABC) scheme for introgression of the “QTL-hotspot” genomic region in DCP 92-3 at ICAR–IIPR.

(a) Details of the MABC scheme adopted, (b) One MABC line (IPC[L4-14]), the right most line) showing higher number of pods compared with the

recurrent (DCP 92-3) and donor (ICC 4958) genotypes

2.5 Statistical analysis

Family-wise ANOVA was carried out using PROC GLM

(SAS Institute, 2016) considering replication, MABC lines as

fixed. Least-square means were calculated from analysis of

variance.

3 RESULTS

3.1 Marker polymorphism, foreground,
and background selection

Among eight SSR markers in the QTL-hotspot region tested

for polymorphism, two markers (NCPGR21 and NCPGR127)

were found polymorphic in the case of Pusa 372 × ICC 4958

and Pusa 362 × ICC 4958 combinations (Supplemental Table

S1). Hence these two markers (NCPGR21 and NCPGR127)

were used for confirmation of hybrids in the F1 generation

and foreground selection in subsequent generations in the case

of Pusa 362 × ICC 4958 (BC1F1, BC2F1) and Pusa 372 ×
ICC 4958 (BC1F1, BC2F1 and BC3F1) crosses. In the case

of DCP 92-3 × ICC 4958 combination, three polymorphic

SSR markers (TAA170, NCPGR21, and TR11) were used for

confirmation of hybrids in the F1 generation and foreground

selection in subsequent generations (BC1F1, BC2F1, and

BC3F1) (Supplemental Table S1).

For background selection, among the 346 SSR markers

tested on the selected donor and recipient parents, 129 mark-

ers showed informative polymorphisms that can be used for

background selection. Among the polymorphic markers, six

to eight markers per linkage group that were equally dis-

tributed across the chickpea genome were selected and used

for background selection. Thus, in total, 47, 53, and 46 poly-

morphic markers were used for background selection for Pusa

372 × ICC 4958, Pusa 362 × ICC 4958, and DCP 92-3 × ICC

4958 crosses, respectively (Supplemental Table S2).

3.2 Introgression of the QTL-hotspot
genomic region in elite chickpea cultivars

3.2.1 Introgression of the QTL-hotspot
genomic region in Pusa 372

A total of 18 F1 seeds were harvested by crossing Pusa 372

× ICC 4958 in the postrainy season of 2013–2014 at the

ICAR–IARI farm, New Delhi. These seeds were grown in the
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off-season nursery at the ICAR–IARI regional station, Dhar-

wad in the rainy season of 2014–2015, and eight heterozygous

F1 plants identified using NCPGR127 and NCPGR21 mark-

ers were backcrossed with the recurrent parent and 12 BC1F1

seeds were obtained. Of these 12 BC1F1 seeds, based on

foreground selection using NCPGR127 and NCPGR21, five

BC1F1 plants (with higher genome recovery using 47 SSR

markers) were selected and then used for the second cycle of

backcrossing in 2014–2015 at ICAR–IARI farm, New Delhi.

Subsequently, approximately 98 BC2F1 seeds were harvested.

From the 98 BC2F1 plants, 44 heterozygous plants selected

using foreground markers were screened with 47 SSR

markers for background selection (Supplemental Table S2).

As a result, six BC2F1 plants with high RPG recovery (90%)

were used for a third backcrossing at ICAR–IARI regional

station, Dharwad, to generate 108 BC3F1 (Figure 1a). Upon

background selection using 47 SSR markers, 20 BC3F1

plants showing 96% of RPG recovery were selected for

selfing. Finally, after two generations of selfing, 20 best

BC3F3 plants were evaluated based on foreground and

background selection, as well as agronomic performance and

evaluated at ICAR–IARI Delhi. The best-performing line,

BGM 10216, was nominated for ICAR–AICRP on Chickpea

trials.

3.2.2 Introgression of the QTL-hotspot
genomic region in Pusa 362 variety

In the case of introgression of the QTL-hotspot genomic

region in Pusa 362 variety, 13 F1 seeds were harvested after

crossing Pusa 362 with ICC 4958 at ICAR–IARI farm, New

Delhi. Five true F1 plants identified using NCPGR127 and

NCPGR21 markers were backcrossed with the recurrent par-

ent, and eight BC1F1 seeds were obtained in a greenhouse dur-

ing the off-season in 2012. Of these eight BC1F1, five BC1F1

plants (with higher genome recovery using 53 SSR markers)

were selected and then used for a second cycle of backcross-

ing during crop season 2012–2013. Subsequently, approxi-

mately 172 BC2F1 seeds were harvested. Of the 172 BC1F1,

24 heterozygous plants selected based on foreground selection

were screened with 53 SSR markers for background selection

(Supplemental Table S2). As a result, four BC2F1 plants with

high RPG recovery (90%) were selfed to generate 134 BC2F2

plants. Of these 134 BC2F2 plants, 51 were found homozy-

gous for both flanking markers (NCPGR127 and NCPGR21).

Of 51 homozygous plants, 20 plants with 90–97% RPG were

selected to raise BC2F3 plants (Figure 2a). Based on agro-

nomic performance, BG 3097 line was nominated for ICAR–

AICRP on Chickpea trials.

3.2.3 Introgression of the QTL-hotspot
genomic region in DCP 92-3 variety

DCP 92-3 variety was targeted for introgressing the QTL-
hotspot genomic region at ICAR–IIPR, Kanpur. Of 34 F1

plants derived from DCP 92-3 × ICC 4958 cross (crop sea-

son 2011–2012), 12 plants confirmed as true hybrids with

foreground markers (TAA170, NCPGR21, and TR11) were

used for making the first backcross, and 57 BC1F1 seeds were

harvested during crop season 2012–2013 (Figure 3a). Based

on foreground selection, three BC1F1 plants were selected

and backcrossed with recurrent parent to generate 68 BC2F1

seeds. Of the 68 BC2F1 seeds harvested during 2013–2014, 18

BC2F1 plants found positive for the QTL-hotspot alleles were

selected for background selection. The RPG recovery varied

between 65 and 70% among the 18 BC2F1 plants using 46

markers. The selected 18 BC2F1 plants were subjected to one

more round of backcrossing and, subsequently, 182 BC3F1

seeds were harvested during crop season 2014–2015. After

foreground selection, 51 BC3F1 plants were found positive

and selfed to generate 168 BC3F2 seeds. Of the 168 BC3F2

plants, 75 BC3F2 plants were analyzed with foreground mark-

ers and 21 BC3F2 plants were found positive. The RPG recov-

ery of 21 BC3F2 plants ranged from 89 to 94% using 46 SSR

markers (Supplemental Table S2).

3.3 Phenotypic evaluation of introgression
lines

3.3.1 Performance of Pusa 372 ILs

Twenty ILs (BC3F3 lines) along with donor (ICC 4958) and

recurrent parent (Pusa 372) were evaluated for different mor-

phological, phenological, and yield-related traits under rain-

fed conditions during 2016–2017 at ICAR–IARI fields. Anal-

ysis of variance for the traits studied indicated a significant

difference among the ILs (Supplemental Table S3). Although

ILs differed significantly for DM, PPP, and YLD, they did

not differ significantly from the recurrent parent for PHT

and DF. Among 20 ILs, two ILs (Pusa 372_IL12 and Pusa

372_IL17) recorded maximum yield (22%) over the recur-

rent parent (Supplemental Table S4). The increased yield is

a result of the increased number of PPP (Figure 1b). Fur-

ther, it was also noted that, all ILs recorded higher seed yield

than both recurrent as well as donor parents. Among the

ILs, 100SDW ranged from 20.19 (Pusa 372_IL05) to 24.32

g (Pusa 372_IL01) with an average of 22.7 g. Nevertheless,

none of the ILs had 100SDW greater than the donor parent

(Figure 1c). The results indicate that, morphologically, the
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T A B L E 1 Comparison of yield (kg ha−1) performance of BGM 10216, one introgression line developed in the genetic background of Pusa 372,

with the recurrent genotype at six locations in the Advanced Varietal Trials−1 of ICAR–All India Coordinated Research Project on Chickpea

conducted during 2017–2018 (Source: AICRP Chickpea Annual Report 2017–2018)

Entries Vijayapura Dharwad Rahuri Badnapur Arnej Gulbarga Mean Frequencya

BGM 10216 2,574 1,033 1,854 1,141 1,302 1,725 1,605 4/6

Pusa 372 (recurrent parent) 2,831 935 1,724 1,207 1,110 1,117 1,487 2/6

Critical difference at 5% NS† 275 373 217 141 385 – –

CV (%) 10.2 15.7 13 11.9 7.4 17 – –

State avg. yield (kg ha−1) 591 591 731 731 1,227 591 – –

aFrequency, the ratio of number locations in which the introgression line performs higher than the recurrent parent to the total number of locations evaluated.
†NS, nonsignificant at 5% level of significance.

T A B L E 2 Comparison of yield (kg ha−1) performance of BGM 10216, one introgression line developed in the genetic background of Pusa 372,

with the recurrent genotype at five locations in the Advanced Varietal Trials−2 of ICAR–All India Coordinated Research Project on Chickpea

conducted during 2018–2019 (Source: AICRP Chickpea Annual Report 2018–2019)

Entries Pedigree Kalaburagi Coimbatore Vijayapura Badnapur Rahuri Mean Frequencya

BGM 10216 (Pusa 372 ×
ICC 4958)

× 2 × Pusa

372)

2,321 846 1,065 1,396 961 1,318 5/5

Pusa 372 (recurrent parent) – 2,101 706 331 1,225 708 1,014 0/5

Critical difference at 5% – 346 67 223 296 245 – –

CV (%) – 10.6 5.1 16.2 1,408 19.9 – –

State avg. yield (kg ha−1) – 559 742 559 782 782 – –

aFrequency, the ratio of number locations in which the introgression line performs higher than the recurrent parent to the total number of locations evaluated.

ILs were like the recurrent parent, Pusa 372. Days to mat-

uraty among the ILs ranged from 105 (Pusa 372_IL15)

to 126 d (Pusa 372_IL12), and the number of PPP

among the ILs varied from 52 to 227 with an average of

177.64 pods.

Under the ICAR–AICRP on Chickpea, a special trial

known as ‘drought tolerance introgression lines’ (DTILs)

evaluated the ILs developed by introgressing the QTL-hotspot
into different genetic backgrounds. Among the best perform-

ing lines, one of the lines, Pusa 372_IL12 designated as

BGM 10216, was evaluated in six and five locations during

crop season 2017–2018 and 2018–2019 in AVT1 and AVT2,

respectively. BGM 10216 outperformed Pusa 372 in four out

of six locations in AVT1 and all five locations in AVT2 trials

(Figure 1d). In overall performance, BGM 10216 recorded

a highest mean yield 1,475 kg ha−1 with a potential 2,575

kg ha−1 under drought-stress conditions over the recurrent

parent Pusa 372 with mean yield 1,272 kg ha−1. It recorded

an overall weighted percentage increase over the mean of

16% with 8% in AVT1 (Table 1) and 30% in AVT2 (Table 2).

Advanced varietal trial data also indicated that it is an early

flowering (50–55 d) and early maturing variety (106 d).

3.3.2 Performance of Pusa 362 ILs

Twenty BC2F3 lines along with donor and recurrent parent

(Pusa 362) were evaluated for root traits and phenological

and yield-related traits. Except for the RDW trait, the ILs dif-

fered significantly for all other root traits under rainfed con-

ditions (Supplemental Table S5). Some of the ILs had RL

and RLD values greater than both donor and recurrent parents

(Figure 2b and 2c). The mean RDW in ILs ranged from 0.45

(Pusa 362_IL18) to 1.4 g (Pusa 362_IL06) (Supplemental

Table S6) with the average being 0.96 g. Seventeen out of 20

ILs had higher RDW than the donor parent ICC 4958. Three

ILs—Pusa 362_IL06, Pusa 362_IL09, and Pusa 362_IL04—

were similar to recurrent parent Pusa 362 for RDW. The SRL

in the ILs varied from 88.59 (Pusa 362_IL06) to 244.99 cm

g−1 (Pusa 362_IL18) with an average of 141.9 cm g−1. Pusa

362_IL18 and Pusa 362_IL19 were significantly superior to

the donor parent in SRL. Although no significant difference

among replications was noted, we observed a significant dif-

ference among the ILs for DM, PPP, and biomass. Further,

the ILs also differed significantly from the parents for PPP,

100SDW, and harvest index (Supplemental Table S7). The
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T A B L E 3 Comparison of yield (kg ha−1) performance of BG 3097, one introgression line developed in the genetic background of Pusa 362,

with the recurrent genotype at six locations in the Advanced Varietal Trials−1 of ICAR–All India Coordinated Research Project on Chickpea

conducted during 2017–2018 (Source: AICRP Chickpea Annual Report of 2017–2018)

Entry Pedigree Vijayapura Dharwad Rahuri Badnapur Arnej Gulbarga Mean Frequencya

BG 3097 (Pusa 362 ×
ICC 4958)

× 2 × Pusa

362)−51

2,727 1,094 1,599 1,043 1,281 402 1,285 5/6

Pusa 362 (recurrent parent) – 2,541 1,211 1,240 898 1,017 402 1,140 1/6

Critical difference at 5% – NS 275 373 217 141 385 – –

CV (%) – 10.2 15.7 13 11.9 7.4 17 – –

General mean (kg ha−1) – 2,641 1,235 1,954 1,290 1,343 1,362 – –

State avg. yield (kg ha−1) – 591 591 731 731 1,227 591 – –

aFrequency, the ratio of number locations in which the introgression line performs higher than the recurrent parent to the total number of locations evaluated.

T A B L E 4 Comparison of yield (kg ha−1) performance of BG 3097, one introgression line developed in the genetic background of Pusa 362,

with the recurrent genotype at four locations in the Advanced Varietal Trials−2 of ICAR–All India Coordinated Research Project on Chickpea

conducted during 2018–2019 (Source: AICRP Chickpea Annual Report of 2018–2019)

Entries Pedigree Kalaburagi Coimbatore Vijayapura Badnapur Mean Frequencya

BG 3097 (Pusa 362 ×
ICC 4958)

× 2 × Pusa

362)−51

2,592 635 1,077 1,291 1,399 5/4

Pusa 362 (recurrent parent) – 2,507 434 1,571 895 1,352 1/4

Critical difference at 5% – 346 67 223 296 – –

CV (%) – 10.6 5.1 16.2 14.8 – –

General mean (kg ha−1) – 2,299 917 972 1,210 – –

State avg. yield (kg ha−1) – 559 742 559 782 – –

aFrequency, the ratio of number locations in which the introgression line performs higher than the recurrent parent to the total number of locations evaluated.

average PHT varied from 33.9 (Pusa 362_IL17) to 44.3 cm

(Pusa 362_IL20) with an average of 38.8 cm. The results

indicate that morphologically, the ILs were like the recurrent

parent Pusa 362. There was significant variation among the

ILs for PPP, which ranged from 33 in Pusa 362_IL14 to 50

in Pusa 362_IL6 and Pusa 362_IL19 with over all mean of

41.81 pods per plant (Supplemental Table S8). The PPP in

recurrent parent Pusa 362 was 48. Biomass per plot ranged

from 415.6 (Pusa 362_IL07) to 800 g (Pusa 362_IL05) with

mean of 561.58 g. Seed yield per plot ranged from 324 (Pusa

362_IL13) to 568.7 g (Pusa 362_IL05) with mean seed yield

418.8 g. The recurrent parent Pusa 362 yielded 521.33 g

while the donor parent ICC 4958 gave a yield of 276 g. Pusa

362_IL05 was the best IL, which gave significantly higher

yield than Pusa 362 under rainfed condition.

Among the best performing lines, one of the lines, desig-

nated as BG 3097 (IL05), was evaluated in six locations dur-

ing crop season 2017–2018 in AVT1 and at four locations

during 2018–2019 in AVT2. BG 3097 recorded an overall

weighted mean yield advantage of 8.0% over recurrent par-

ent Pusa 362 in DTIL trial across 10 locations under AICRP

over two consecutive years (AVT1 & AVT2; Table 3 and 4).

Overall, BG 3097 showed mean yield superiority of 12.4%

over national check JG 16 and 3.5% over JAKI 9218 under

drought conditions. Overall, BG 3097 recorded a weighted

mean yield of 1,374 kg ha−1 with a potential 1,902 kg ha−1

under drought-stress conditions over the recurrent parent Pusa

362, which recorded weighted mean yield of 1,272 kg ha−1.

3.3.3 Performance of DCP 92-3 ILs

A total of 21 ILs (BC3F3 lines) in the genetic background

of DCP 92-3 were evaluated for different agronomic and

yield-related traits at the ICAR–IIPR, Kanpur, fields. No sig-

nificant difference in performance was observed among the

replications. However, the MABC lines did differ signifi-

cantly for all traits except primary branches (Supplemental

Table S9). Of 21 ILs, 17 ILs showed 100SDW more than the
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recurrent parent and four ILs—IPC7(20), IPC9(5), IPC19(1),

and IPC21(7)-2—had 100SDW less than the recurrent par-

ent. Except for IPC4(11), IPC4(2), IPC4(24), and IPC4(26)

ILs, all other ILs had higher yield than DCP 92-3. In brief,

16 ILs outperformed ICC 4958 in terms of yield; how-

ever, five ILs—IPC4(11), IPC4(18), IPC4(2), IPC4(24), and

IPC4(26)—yielded less than the donor parent (Supplemen-

tal Table S10). The number of PPP increased significantly in

the case of IPC(L4-14) (Figure 3b). During 2016–2017, three

ILs—IPC(L4-14), IPC(L4-16), and IPC(L19-1)—were eval-

uated under rainfed and irrigated condition along with DCP

92-3 at ICAR–IIPR, Kanpur.

Three superior ILs—IPC(L4-14), IPC(L4-16), and

IPC(L19-1)—having positive alleles of the QTL-hotspot
region were nominated for testing in AVT1 trials of

ICAR–AICRP on Chickpea during crop season 2018–2019.

Although the mean yield of all three lines tested was higher

than the mean yield of recurrent parent, the line IPC(L4-14)

recorded 5–38% increase in yield over recurrent parent

in four different locations (Table 5). Hence, this line has

been selected for further testing for its yield performance in

upcoming AVT2 trials during the crop season 2019–2020.

4 DISCUSSION

In the context of rapid climate changes, development of

climate-resilient varieties is prerequisite to attain sustain-

able crop production and meet the global food demands.

Achieving self-sufficiency and meeting future demands for

food grains may not be possible using conventional breed-

ing approaches alone. To accelerate faster genetic gains and

make small-holder agriculture profitable, the integration of

approaches like genomics, phenotyping, and systems mod-

elling and agronomy are essential (Varshney et al., 2018).

Recently, the ‘5Gs’ (genome assembly, germplasm character-

ization, gene function identification, genomic breeding, and

gene editing) breeding approach has been proposed for achiev-

ing precision and enhancing the crop improvement to meet

the future demands of nutritious food (Varshney et al., 2020).

Climate changes in recent years increased the occurrence of

more severe, longer, and intense droughts in most of the areas

in northern and eastern India (Ge, Huang, Xu, Qi, & Liu,

2014). Hence, breeding for drought-tolerant chickpeas is a

priority. This a first study in pulses that reports enhance-

ment of drought tolerance is multiple genetic backgrounds of

chickpea as well as release of one drought-tolerant molec-

ular breeding variety for commercial cultivation using the

MABC approach. In the present study, we report development

of 61 ILs (20 BC3F3 ILs in Pusa 372, 20 BC2F3 ILs in Pusa

362, and 21 BC3F3 ILs in DCP 92-3) by introgressing the

QTL-hotspot genomic region that harbors QTLs for several

drought-tolerant related traits. T
A
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Of eight SSR markers in the QTL-hotspot genomic region,

none of the three donor and recipient parent combinations

had all eight markers polymorphic. Hence, we used two

to three polymorphic SSR markers with respective cross-

combinations for foreground selection at each generation. The

low percentage of marker polymorphism is not uncommon

in highly self-pollinated species like chickpea. Three SSRs

markers (TAA170, ICCM0249, and STMS11) were used for

foreground selection while introgressing the QTL-hotspot
genomic region into JG 11 genetic background. Further, based

on marker polymorphism, we used 46 to 53 markers for esti-

mating the RPG recovery. In the case of ILs in Pusa 362 back-

ground, 90–97% of RPG recovery was observed, hence the

third cycle of backcrossing was not taken like the other two

MABC programs. Earlier, higher background genome recov-

ery in the second backcross generation was also reported in

the case of molecular breeding lines with enhanced Fusar-

ium wilt resistance developed in Annigeri 1 genetic back-

ground (Mannur et al., 2019). Similarly, higher genome recov-

ery in early generations is not uncommon. For instance, in the

case of rice (Oryza sativa L.), 91.6% RPG recovery in the

BC2F1 generation was reported while pyramiding blast resis-

tance genes into an elite Basmati rice (Singh et al., 2013).

In the case of ILs derived from Pusa 372 and DCP 92-3,

>90% RPG recovery was observed. Similarly, >90% back-

ground genome recovery was also reported in earlier stud-

ies in chickpea in progenies after three backcross generations

(Pratap et al., 2017; Varshney et al., 2013a, 2014b).

Pusa 372 is a popular and widely adapted landmark chick-

pea variety released for the northwestern plains zone, the

northeaster plains zone, and the central zone in India. A total

of 20 ILs were developed after three cycles of backcrossing

of Pusa 372 with ICC 4958 followed by two selfings. Inter-

estingly, all introgression lines outperformed both donor and

recipient parents evaluated under rainfed conditions at ICAR–

IARI. Large variation for DM was observed among the ILs.

The early flowering and early maturing ILs identified in the

present study will fit well in double cropping, therefore, these

ILs are ideal for the sustainability of rice-based cropping sys-

tems. Further, because of short duration they also fit into crop-

ping systems of the central zone. Pusa 362 is a bold-seeded

and Fusarium wilt resistant variety released for cultivation

in the northwestern plains zone in India by ICAR–IARI in

1995. A total of 20 ILs were generated after two cycles of

backcrossing with Pusa 362 and two rounds of selfing. These

ILs have shown significant variation in RDW and RLD. In

an earlier study, 257 recombinant inbred lines derived from a

cross between ICC 4958 (large root system) and ‘Annigeri’ (an

agronomically elite variety) also showed variation for RLD at

35 d after sowing in field conditions under terminal drought

(Serraj et al., 2004). Lynch and Wojciechowski (2015) have

also considered RL and root depth as important root architec-

tural traits that directly influence the acquisition of water and

nutrients from the soil. Most of the ILs are expected to be phe-

notypically similar to each other and to the recurrent parent

Pusa 362. However, significant variation among the ILs was

observed for seed yield and PPP. Some studies have reported

that yield potential is known to contribute to yield under water

stress in several crops including chickpea (Pang et al., 2017;

Pushpavalli et al., 2020; Varshney et al., 2018). The recur-

rent parent Pusa 362 yielded 521.33 g while the donor par-

ent ICC 4958 gave a yield of 276 g. Two ILs (BG 3097

and BG 4005), which gave significantly higher yield than

Pusa 362 under rainfed condition, were nominated for mul-

tilocation testing and future release under ICAR–AICRP on

Chickpea.

DCP 92-3 is a lodging- and wilt-resistant variety with yel-

lowish brown, medium bold seeds released by IIPR in 1997

for cultivation in Punjab, Haryana, Delhi, northern Rajasthan,

and western Uttar Pradesh. A total 21 ILs (BC3F3 line) were

developed by MABC of DCP 92-3 with ICC 4958 after involv-

ing three cycles of backcrossing and two rounds of selfing.

Based on 2 yr of yield evaluation, IPC(L4-14), IPC(L4-16),

and IPC(L19-1) ILs with >16% yield increase over the

recurrent parent were nominated for AICRP Chickpea trials.

IPC(L4-14) with 11.0% yield over check and the recurrent

parent in AVT1 trial has been promoted to AVT2 trial.

Besides developing superior lines with enhanced yield

under rainfed or drought-stress condition through introgres-

sion of the QTL-hotspot into different genetic backgrounds,

we also report the successful release of one improved

variety, Pusa Chickpea 10216, in India (https://icar.org.in/

content/development-two-superior-chickpea-varieties-

genomics-assisted-breeding). Pusa Chickpea 10216 recorded

an overall weighted mean yield advantage of 16% over

recurrent parent Pusa 372 across all the centers tested in

national DTIL trials under AICRIP over two consecutive

years, 2017–2018 (8% over Pusa 372 over six locations)

and crop season 2018–2019 (30% over Pusa 372 over five

locations). It is a profusely branching variety with more pods

per unit area with overall weighted mean yield of 1,475 kg

ha−1 and has yield potential of 2,575 kg ha−1 under drought

stress over the recurrent parent Pusa 372, which yielded

1,272 kg ha−1. It is an early flowering (50–55 d) and early

maturing variety (106 d) and fits in central and southern

zones. Further, it is moderately resistant to Fusarium wilt,

dry root rot, and pod borer.

In summary, the present study demonstrates that the intro-

gression of the QTL-hotspot into three elite genetic back-

grounds enhances drought tolerance and seed yield under

drought stress conditions. Further, superior ILs developed

in different genetic backgrounds can be tested for possi-

ble release as improved varieties. In addition to developing

the superior lines, we also reported the release of improved

varieties with enhanced drought tolerance and higher yield

under drought stress.

https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding
https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding
https://icar.org.in/content/development-two-superior-chickpea-varieties-genomics-assisted-breeding


12 of 14 BHARADWAJ ET AL.The Plant Genome

AU T H O R C O N T R I B U T I O N S
C.B., S.T., K.R.S. supervised the crossing and selection of

lines in breeding program. M.T. supervised the marker geno-

typing and data analysis for selection of lines. R.K.S., S.S.

conducted the experiments. M.T., M.R., B.S.P., A.C., R.P.,

Y.T., B.M., P.S.S., A.K.S., S.K.C., G.P.D., N.P.S., R.K.V. con-

tributed resources, data analysis and interpretation. A.R., A.V.

did the statistical analysis. R.K.V. conceived the idea and

provided the technical support and guidance to the overall

research. All authors read and approved the MS.

A C K N O W L E D G E M E N T S
Authors greatly acknowledge the Department of Biotechnol-

ogy of Ministry of Science and Technology and Department

of Agriculture & Cooperation of Ministry of Agriculture and

Farmers Welfare of Government of India, and partially to

Bill & Melinda Gates Foundation for financial support to this

study

C O N F L I C T O F I N T E R E S T
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

O R C I D
Chellapilla Bharadwaj https://orcid.org/0000-0002-1651-

7878

Shailesh Tripathi https://orcid.org/0000-0001-5142-3781

Khela R. Soren https://orcid.org/0000-0002-1604-7490

Mahendar Thudi https://orcid.org/0000-0003-2851-6837

Manish Roorkiwal https://orcid.org/0000-0001-6595-

281X

Abhishek Rathore https://orcid.org/0000-0001-6887-4095

Biswajit Mondal https://orcid.org/0000-0002-5698-0007

Pichandampalayam Subramaniam Shanmugavadivel https:

//orcid.org/0000-0002-5178-8980

Rajeev K. Varshney https://orcid.org/0000-0002-4562-

9131

R E F E R E N C E S
Ahmad, F., Gaur, P. M., & Croser, J. (2005). Chickpea (Cicer arietinum

L.). In R. J. Singh & P. P. Jauhar (Eds.), Genetic resources, chromo-
some engineering, and crop improvement—Grain Legumes (pp. 187–

217). Boca Raton, FL: CRC Press.

Berger, J., Palta, J., & Vadez, V. (2016). An integrated framework for

crop adaptation to dry environments: Responses to transient and ter-

minal drought. Plant Science, 253, 58–67. https://doi.org/10.1016/j.

plantsci.2016.09.007

Bohra, A., Saxena, K. B., Varshney, R. K., & Saxena, R. K. (2020).

Genomics-assisted breeding for pigeonpea improvement. Theoreti-
cal and Applied Genetics, 133, 1721–1737. https://doi.org/10.1007/

s00122-020-03563-7

Carrão, H., Naumann, G., & Barbosa, P. (2018). Global projections of

drought hazard in a warming climate: A prime for disaster risk man-

agement. Climate Dynamics, 50, 2137–2155. https://doi.org/10.1007/

s00382-017-3740-8

Deokar, A., Sagi, M., Daba, K., & Tar’an, B. (2019). QTL sequenc-

ing strategy to map genomic regions associated with resistance to

ascochyta blight in chickpea. Plant Biotechnology Journal, 17, 275–

288. https://doi.org/10.1111/pbi.12964

Dixit, G. P., Srivastava, A. K., & Singh, N. P. (2019). Marching towards

self-sufficiency in chickpea. Current Science, 116, 239–242. https:

//doi.org/10.18520/cs/v116/i2/239-242

FAOSATAT, (2019). Crops. Retrieved from https://www.fao.org/faostat/

en/#data/QC/visualize

Gaur, P.M., Samineni, S., Thudi, M., Tripathi, S., Sajja, S.B., Jayalak-

shmi, V., . . . Dixit, G.P. (2019). Integrated breeding approaches for

improving drought and heat adaptation in chickpea (Cicer arietinum
L.). Plant Breeding, 138, 389–400. https://doi.org/10.1111/pbr.12641

Ge, J., Huang, J., Xu, C., Qi, Y., & Liu, H. (2014). Characteristics of

Taklimakan dust emission and distribution: A satellite and reanaly-

sis field perspective. Journal of Geophysical Research: Atmospheres,

119, 11772–11783. https://doi.org/10.1002/2014JD022280

Gunes, A., Cicek, N., Inal, A., Alpaslan, M., Eraslan, F., Guneri, E.,

& Guzelordu, T. (2006). Genotypic response of chickpea (Cicer ari-
etinum L.) cultivars to drought stress implemented at pre-and post-

anthesis stages and its relations with nutrient uptake and efficiency.

Plant Soil and Environment, 52, 368–376.

Hamwieh, A., Imtiaz, M., & Malhotra, R. S. (2013). Multi-environment

QTL analyses for drought-related traits in a recombinant inbred

population of chickpea (Cicer arientinum L.). Theoretical and
Applied Genetics, 126, 1025–1038. https://doi.org/10.1007/s00122-

012-2034-0

Jaganathan, D., Thudi, M., Kale, S., Azam, S., Roorkiwal, M., Gaur,

P. M., . . . Varshney, R. K. (2015). Genotyping-by-sequencing based

intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought

tolerance in chickpea. Molecular Genetics and Genomics, 290, 559–

572. https://doi.org/10.1007/s00438-014-0932-3

Kale, S. M., Jaganathan, D., Ruperao, P., Chen, C., Punna, R., Kudapa,

H., . . . Varshney, R. K. (2015). Prioritization of candidate genes

in “QTL-hotspot” region for drought tolerance in chickpea (Cicer
arietinum L.). Scientific Reports, 5, 15296. https://doi.org/10.1038/

srep15296

Kang, J. W., Shin, D., Cho, J. H., Lee, J. Y., Kwon, Y., Park, D. S., . . . Lee,

J. H. (2019). Accelerated development of rice stripe virus-resistant,

near-isogenic rice lines through marker-assisted backcrossing. PLoS
ONE, 14, e0225974 https://doi.org/10.1371/journal.pone.0225974

Kashiwagi, J., Krishnamurthy, L., Gaur, P.M., Chandra, S., & Upad-

hyaya, H.D. (2008). Estimation of gene effects of the drought avoid-

ance root characteristics in chickpea (C. arietinum L.). Field Crops
Research, 105, 64–69. https://doi.org/10.1016/j.fcr.2007.07.007

Kashiwagi, J., Krishnamurthy, L., Gaur, P. M., Upadhyaya, H. D., Varsh-

ney, R. K., & Tobita, S. (2013). Traits of relevance to improve yield

under terminal drought stress in chickpea (C. arietinum L.). Field
Crops Research, 145, 88–95. https://doi.org/10.1016/j.fcr.2013.02.

011

Kashiwagi, J., Krishnamurthy, L., Purushothaman, R., Upadhyaya, H.

D., Gaur, P. M., Gowda, C. L. L., . . . Varshney, R. K. (2015). Scope for

improvement of yield under drought through the root traits in chickpea

(Cicer arietinum L.). Field Crops Research, 174, 47–54. https://doi.

org/10.1016/j.fcr.2014.10.003

Kashiwagi, J., Krishnamurthy, L., Upadhyaya, H. D., Krishna, H.,

Chandra, S., Vadez, V., & Serraj, R. (2005). Genetic variability of

https://orcid.org/0000-0002-1651-7878
https://orcid.org/0000-0002-1651-7878
https://orcid.org/0000-0002-1651-7878
https://orcid.org/0000-0001-5142-3781
https://orcid.org/0000-0001-5142-3781
https://orcid.org/0000-0002-1604-7490
https://orcid.org/0000-0002-1604-7490
https://orcid.org/0000-0003-2851-6837
https://orcid.org/0000-0003-2851-6837
https://orcid.org/0000-0001-6595-281X
https://orcid.org/0000-0001-6595-281X
https://orcid.org/0000-0001-6595-281X
https://orcid.org/0000-0001-6887-4095
https://orcid.org/0000-0001-6887-4095
https://orcid.org/0000-0002-5698-0007
https://orcid.org/0000-0002-5698-0007
https://orcid.org/0000-0002-5178-8980
https://orcid.org/0000-0002-5178-8980
https://orcid.org/0000-0002-5178-8980
https://orcid.org/0000-0002-4562-9131
https://orcid.org/0000-0002-4562-9131
https://orcid.org/0000-0002-4562-9131
https://doi.org/10.1016/j.plantsci.2016.09.007
https://doi.org/10.1016/j.plantsci.2016.09.007
https://doi.org/10.1007/s00122-020-03563-7
https://doi.org/10.1007/s00122-020-03563-7
https://doi.org/10.1007/s00382-017-3740-8
https://doi.org/10.1007/s00382-017-3740-8
https://doi.org/10.1111/pbi.12964
https://doi.org/10.18520/cs/v116/i2/239-242
https://doi.org/10.18520/cs/v116/i2/239-242
https://www.fao.org/faostat/en/#data/QC/visualize
https://www.fao.org/faostat/en/#data/QC/visualize
https://doi.org/10.1111/pbr.12641
https://doi.org/10.1002/2014JD022280
https://doi.org/10.1007/s00122-012-2034-0
https://doi.org/10.1007/s00122-012-2034-0
https://doi.org/10.1007/s00438-014-0932-3
https://doi.org/10.1038/srep15296
https://doi.org/10.1038/srep15296
https://doi.org/10.1371/journal.pone.0225974
https://doi.org/10.1016/j.fcr.2007.07.007
https://doi.org/10.1016/j.fcr.2013.02.011
https://doi.org/10.1016/j.fcr.2013.02.011
https://doi.org/10.1016/j.fcr.2014.10.003
https://doi.org/10.1016/j.fcr.2014.10.003


BHARADWAJ ET AL. 13 of 14The Plant Genome

drought-avoidance root traits in the mini-core germplasm collection of

chickpea (Cicer arietinum L). Euphytica, 146, 213–222. https://doi.

org/10.1007/s10681-005-9007-1

Ladizinsky, G. (1975). A new Cicer from Turkey. Notes from the Royal
Botanic Garden, 34, 201–202.

Li, Y., Ruperao, P., Batley, J., Edwards, D., Khan, T., Colmer, T. D., &

Sutton, T. (2018). Investigating drought tolerance in chickpea using

genome-wide association mapping and genomic selection based on

whole-genome resequencing data. Frontiers in Plant Science, 9, 190.

https://doi.org/10.3389/fpls.2018.00190

Lynch, J. P., & Wojciechowski, T. (2015). Opportunities and challenges

in the subsoil: Pathways to deeper rooted crops. Journal of Experi-
mental Botany, 66, 2199–2210. https://doi.org/10.1093/jxb/eru508

Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., &

Sohrabi, E. (2010). Effect of drought stress on yield, proline and

chlorophyll contents in three chickpea cultivars. Australian Journal
of Crop Science, 4, 580–585.

Mannur, D. M., Babbar, A., Thudi, M., Sabbavarapu, M. M., Roorkiwal,

M., Sharanabasappa, Y., . . . Chamarthi, S. K. (2019). Super Annigeri

1 and improved JG 74: Two Fusarium wilt-resistant introgression lines

developed using marker-assisted backcrossing approach in chickpea

(Cicer arietinum L.). Molecular Breeding, 39, 2. https://doi.org/10.

1007/s11032-018-0908-9

Mantri, N. L., Ford, R., Coram, T. E., & Pang, E. C. (2007). Transcrip-

tional profiling of chickpea genes differentially regulated in response

to high-salinity, cold and drought. BMC Genomics, 2, 303. https:

//doi.org/10.1186/1471-2164-8-303

Mashaki, K. M., Garg, V., Ghomi, A. A. N., Kudapa, H., Chitikineni,

A., Nezhad, K. Z., . . . Thudi, M. (2018). RNA-Seq analysis revealed

genes associated with drought stress response in Kabuli chickpea

(Cicer arietinum L.). PLoS ONE, 13, e0199774.

Mishra, A. K., Singh, V. P., & Desai, V. R. (2009). Drought characteri-

zation: A probabilistic approach. Stochastic Environmental Research
and Risk Assessment, 23, 41–45. https://doi.org/10.1007/s00477-007-

0194-2

Nayak, S. N., Zhu, H., Varghese, N., Datta, S., Choi, H.-K., Horres, R., . . .

Varshney, R. K. (2010). Integration of novel SSR and gene-based SNP

marker loci in the chickpea genetic map and establishment of new

anchor points with Medicago truncatula genome. Theoretical and
Applied Genetics, 120, 1415–1441. https://doi.org/10.1007/s00122-

010-1265-1

Oladosu, Y., Rafii, M. Y., Arolu, F., Chukwu, S. C., Muhammad, I.,

Kareem, I., . . . Arolu, I. W. (2020). Submergence tolerance in rice:

Review of mechanism, breeding and, future prospects. Sustainability,

12, 1632. https://doi.org/10.3390/su120416

Pandey, M. K., Pandey, A. K., Kumar, R., Nwosu, V., Guo, B., Wright,

G., . . . Zhuang, W. (2020). Translational genomics for achieving

higher genetic gains in groundnut. Theoretical and Applied Genetics,

133, 1679–1702. https://doi.org/10.1007/s00122-020-03592-2

Pang, J., Turner, N. C., Du, Y. L., Colmer, T. D., & Siddique, K. H. M.

(2017). Pattern of water use and seed yield under terminal drought in

chickpea genotypes. Frontiers in Plant Science, 8, 1375. https://doi.

org/10.3389/fpls.2017.0137

Prasanna, B. M., Palacios-Rojas, N., Hossain, F., Muthusamy, V.,

Menkir, A., Dhliwayo, T., . . . Fan, X. (2020).Molecular breeding for

nutritionally enriched maize: Status and prospects. Frontiers in Genet-
ics, 10, 1392. https://doi.org/10.3389/fgene.2019.01392

Pratap, A., Chaturvedi, S. K., Tomar, R., Rajan, N., Malviya, N., Thudi,

M., . . . Singh, N. P. (2017). Marker-assisted introgression of resis-

tance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi

chickpea. Molecular Genetics Genomics, 292, 1237–1245. https://doi.

org/10.1007/s00438-017-1343-z

Purushothaman, R., Krishnamurthy, L., Upadhyaya, H. D., Vadez, V.,

& Varshney, R. K. (2017). Root traits confer grain yield advantages

under terminal drought in chickpea (Cicer arietinum L.). Field Crops
Research, 201, 146–161. https://doi.org/10.1016/j.fcr.2016.11.004

Purushothaman, R., Zaman-Allah, M., Mallikarjuna, N., Pannirselvam,

R., Krishnamurthy, L., & Gowda, C. L. L. (2013). Root anatomical

traits and their possible contribution to drought tolerance in grain

legumes. Plant Production Science, 16, 1–8.

Purushothaman, R., Krishnamurthy, L., Upadhyaya, H. D., Vadez, V.,

& Varshney, R. K. (2016). Shoot traits and their relevance in termi-

nal drought tolerance of chickpea (Cicer arietinum L.). Field Crop
Research, 197, 10–27. https://doi.org/10.1016/j.fcr.2016.07.016

Purushothaman, R., Thudi, M., Krishnamurthy, L., Upadhyaya, H. D.,

Kashiwagi, J., Gowda, C. L. L., & Varshney, R. K. (2015). Associ-

ation of mid-reproductive stage canopy temperature depression with

the molecular markers and grain yields of chickpea (Cicer arietinum
L.) germplasm under terminal drought. Field Crops Research, 174,

1–11. https://doi.org/10.1016/j.fcr.2015.01.007

Pushpavalli, R., Berger, J. D., Turner, N. C., Siddique, K. H., Colmer, T.

D., & Vadez, V. (2020). Cross-tolerance for drought, heat and salinity

stresses in chickpea (Cicer arietinum L.). Journal of Agronomy and
Crop Science, 206, 405–419. https://doi.org/10.1111/jac.12393

Pushpavalli, R., Krishnamurthy, L., Thudi, M., Gaur, P. M., Rao, M. V.,

Siddique, K. H. M., . . . Vadez, V. (2015). Two key genomic regions

harbour QTLs for salinity tolerance in ICCV 2× JG 11 derived chick-

pea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol-
ogy, 15, 1–15. https://doi.org/10.1186/s12870-015-0491-8

Rehman, A. U., Malhotra, R. S., Bett, K., Bueckert, R., & Warkentin, T.

D. (2011). Mapping QTL associated with traits affecting grain yield

in chickpea (Cicer arietinum L.) under terminal drought stress. Crop
Science, 51, 450–463. https://doi.org/10.2135/cropsci2010.03.0129

Roorkiwal, M., Jain, A., Kale, S. M., Doddamani, D., Chitikineni, A.,

Thudi, M., & Varshney, R. K. (2018). Development and evaluation

of high-density Axiom®CicerSNP Array for high-resolution genetic

mapping and breeding applications in chickpea. Plant Biotechnology
Journal, 16, 890–901. https://doi.org/10.1111/pbi.12836

Roorkiwal, M., Bharadwaj, C., Barmukh, R., Dixit, G. P., Thudi, M.,

Gaur, P. M., . . . Varshney, R. K. (2020). Integrating genomics for

chickpea improvement: Achievements and opportunities. Theoreti-
cal and Applied Genetics, 133, 1703-1720. https://doi.org/10.1007/

s00122-020-03584-2

Sab, S., Lokesha, R., Mannur, D. M., Bangarammanavar, S., Jadhav,

K., Mallikarjuna, B. P., . . . Thudi, M. (2020). Genome-wide SNP

discovery and mapping QTLs for seed iron and zinc concentrations

in chickpea (Cicer arietinum L.). Frontiers in Nutrition, 7, 559120.

https://doi.org/10.3389/fnut.2020.559120

SAS Institute. (2016). SAS 9.4 language reference: Concepts, 6th ed.

Cary, NC: SAS Institute Inc.

Serraj, R., Krishnamurthy, L., Kashiwagi, J., Kumar, J., Chandra, S., &

Crouch, J. H. (2004). Variation in root traits of chickpea (Cicer ari-
etinum L.) grown under terminal drought. Field Crops Research, 88,

115–127. https://doi.org/10.1016/j.fcr.2003.12.001

Singh, R., Sharma, P., Varshney, R. K., Sharma, S. K., & Singh, N.

K. (2008). Chickpea improvement: Role of wild species and genetic

markers. Biotechnology and Genetic Engineering Reviews, 25, 267–

313. https://doi.org/10.5661/bger-25-267

https://doi.org/10.1007/s10681-005-9007-1
https://doi.org/10.1007/s10681-005-9007-1
https://doi.org/10.3389/fpls.2018.00190
https://doi.org/10.1093/jxb/eru508
https://doi.org/10.1007/s11032-018-0908-9
https://doi.org/10.1007/s11032-018-0908-9
https://doi.org/10.1186/1471-2164-8-303
https://doi.org/10.1186/1471-2164-8-303
https://doi.org/10.1007/s00477-007-0194-2
https://doi.org/10.1007/s00477-007-0194-2
https://doi.org/10.1007/s00122-010-1265-1
https://doi.org/10.1007/s00122-010-1265-1
https://doi.org/10.3390/su120416
https://doi.org/10.1007/s00122-020-03592-2
https://doi.org/10.3389/fpls.2017.0137
https://doi.org/10.3389/fpls.2017.0137
https://doi.org/10.3389/fgene.2019.01392
https://doi.org/10.1007/s00438-017-1343-z
https://doi.org/10.1007/s00438-017-1343-z
https://doi.org/10.1016/j.fcr.2016.11.004
https://doi.org/10.1016/j.fcr.2016.07.016
https://doi.org/10.1016/j.fcr.2015.01.007
https://doi.org/10.1111/jac.12393
https://doi.org/10.1186/s12870-015-0491-8
https://doi.org/10.2135/cropsci2010.03.0129
https://doi.org/10.1111/pbi.12836
https://doi.org/10.1007/s00122-020-03584-2
https://doi.org/10.1007/s00122-020-03584-2
https://doi.org/10.3389/fnut.2020.559120
https://doi.org/10.1016/j.fcr.2003.12.001
https://doi.org/10.5661/bger-25-267


14 of 14 BHARADWAJ ET AL.The Plant Genome

Singh, V. K., Singh, A., Singh, S. P., Ellur, R. K., Singh, D., Gopala

Krishnan, S., . . . Singh, A. K. (2013). Marker-assisted simultaneous

but stepwise backcross breeding for pyramiding blast resistance genes

Piz5 and Pi54 into an elite Basmati rice restorer line ‘PRR78’. Plant
Breeding, 132, 486–495. https://doi.org/10.1111/pbr.12077

Sivasakthi, K., Thudi, M., Tharanya, M., Kale, S. M., Kholová, J., Hal-

ime, M. H., . . . Vadez, V. (2018). Plant vigour QTLs co-map with an

earlier reported QTL hotspot for drought tolerance while water sav-

ing QTLs map in other regions of the chickpea genome. BMC Plant
Biology, 18, 29. https://doi.org/10.1186/s12870-018-1245-1

Thudi, M., Bohra, A., Nayak, S. N., Varghese, N., Shah, T. M., Penmetsa,

R. V., . . . Varshney, R. K. (2011). Novel SSR markers from BAC-end

sequences, DArT arrays and a comprehensive genetic map with 1,291

marker loci for chickpea (Cicer arietinum L.). PLoS ONE, 6, e27275.

https://doi.org/10.1371/journal.pone.0027275

Thudi, M., Chitikineni, A., Liu, X., He, W., Roorkiwal, M., Yang, W.,

. . . Varshney, R. K. (2016a). Recent breeding programs enhanced

genetic diversity in both desi and Kabuli varieties of chickpea (Cicer
arietinum L.). Scientific Reports, 6, 38636. https://doi.org/10.1038/

srep38636

Thudi, M., Gaur, P. M., Krishnamurthy, L., Mir, R. R., Kudapa, H.,

Fikre, A., . . . Varshney, R. K. (2014b). Genomics-assisted breeding

for drought tolerance: A dream comes true in chickpea! Functional
Plant Biology, 41, 1178–1190. https://doi.org/10.1071/FP13318

Thudi, M., Khan, A. W., Kumar, V., Gaur, P. M., Katta, A. V. S.K., Garg,

V., . . . Varshney, R. K. (2016b). Whole genome re-sequencing reveals

genome wide variations among parental lines of mapping populations

in chickpea (Cicer arietinum). BMC Plant Biology, 16, 10. https://doi.

org/10.1186/s12870-015-0690-3

Thudi, M., Upadhyaya, H. D., Rathore, A., Gaur, P. M., Krishnamurthy,

L., Roorkiwal, M., . . . Varshney, R. K. (2014a). Genetic dissection

of drought and heat tolerance in chickpea through genome-wide and

candidate gene-based association mapping approaches. PLoS ONE, 9,

e96758. https://doi.org/10.1371/journal.pone.0096758

United Nations Office for Disaster Risk Reduction (2009). Drought
risk reduction framework and practices: Contributing to the imple-
mentation of the hyogo framework for action. Geneva, Switzer-

land: United Nations International Strategy for Disaster Reduc-

tion. Retrieved from https://www.preventionweb.net/files/11541_

DroughtRiskReduction2009library.pdf

Upadhyaya, H. D., Kashiwagi, J., Varshney, R. K., Gaur, P. M., Saxena,

K. B., Krishnamurthy, L., . . . Singh, I. P. (2012). Phenotyping chick-

peas and pigeonpeas for adaptation to drought. Frontiers in Physiol-
ogy, 3, 179. https://doi.org/10.3389/fphys.2012.00179

Vadez, V., Krishnamurthy, L., Thudi, M., Colmer, T. D., Turner, N.

C., Siddique, K. H. M., . . . Varshney, R. K. (2012). Assessment of

ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduc-

tion to salt stress and reveals QTLs for seed yield and seed number.

Molecular Breeding, 30, 9–21. https://doi.org/10.1007/s11032-011-

9594-6

van der Maesen, L. J. G. (1987). Origin, history and taxonomy of chick-

pea. In M. C. Saxena & K. B. Singh (Eds.), The chickpea (pp. 11–34).

Wallingford, UK: CAB International.

Varshney, R. K. (2016). Exciting journey of 10 years from genomes to

fields and markets: Some success stories of genomics-assisted breed-

ing in chickpea, pigeonpea and groundnut. Plant Science, 242, 98–

107. https://doi.org/10.1016/j.plantsci.2015.09.009

Varshney, R. K., Gaur, P. M., Chamarthi, S. K., Krishnamurthy, L., Tri-

pathi, S., Kashiwagi, J., . . . Jaganathan, D. (2013a). Fast-Track intro-

gression of “QTL-hotspot” for root traits and other drought toler-

ance traits in JG 11, an elite and leading variety of chickpea. The
Plant Genome, 6(3), 1–9. https://doi.org/10.3835/plantgenome2013.

07.0022

Varshney, R. K., Sinha, P., Singh, V. K., Kumar, A., Zhang, Q., & Bennet-

zen, J. L. (2020). 5Gs for crop genetic improvement, Current Opinions
in Plant Biology, 56, 190-196. https://doi.org/10.1016/j.pbi.2019.12.

004

Varshney, R. K., Song, C., Saxena, R. K., Azam, S., Yu, S., Sharpe, A. G.,

. . . Cook, D. R. (2013b). Draft genome sequence of chickpea (Cicer
arietinum) provides a resource for trait improvement. Nature Biotech-
nology, 31, 240–246. https://doi.org/10.1038/nbt.2491

Varshney, R. K., Thudi, M., Nayak, S. N., Gaur, P. M., Kashiwagi, J.,

Krishnamurthy, L., . . . Viswanatha, K. P. (2014a). Genetic dissec-

tion of drought tolerance in chickpea (Cicer arietinum L.). Theoretical
and Applied Genetics, 127, 445–462. https://doi.org/10.1007/s00122-

013-2230-6

Varshney, R. K., Thudi, M., Pandey, M. K., Tardieu, F., Ojiewo, C.,

Vadez, V., . . . Bergvinson, D. (2018). Accelerating genetic gains in

legumes for the development of prosperous smallholder agriculture:

Integrating genomics, phenotyping, systems modelling and agron-

omy. Journal of Experimental Botany, 69, 3293–3312. https://doi.org/

10.1093/jxb/ery088

Varshney, R. K., Thudi, M., Roorkiwal, M., He, W., Upadhyaya, H.

D., Yang, W., . . . Liu, X. (2019). Resequencing of 429 chickpea

accessions from 45 countries provides insights into genome diversity,

domestication and agronomic traits. Nature Genetics, 51, 857–864.

https://doi.org/10.1038/s41588-019-0401-3

Varshney, R. K., Tuberosa, R., & Tardieu, F. (2018). Progress in under-

standing drought tolerance: From alleles to cropping systems, Journal
of Experimental Botany, 69, 3175–3179. https://doi.org/10.1093/jxb/

ery187

Varshney, R. K., Hiremath, P. J., Lekha, P. T., Kashiwagi, J., Balaji,

J., Deokar, A. A., . . . Hoisington, D. A. (2009). A comprehensive

resource of drought- and salinity- responsive ESTs for gene discov-

ery and marker development in chickpea (Cicer arietinum L.). BMC
Genomics, 10, 523. https://doi.org/10.1186/1471-2164-10-523

Varshney, R. K., Mohan, S. M., Gaur, P. M., Chamarthi, S.K., Singh, V.

K., Samineni, S., . . . Pande, S. (2014b). Marker-assisted backcrossing

to introgress resistance to Fusarium wilt race 1 and Ascochyta blight

in C 214, an elite cultivar of chickpea. The Plant Genome, 7. https:

//doi.org/10.3835/plantgenome2013.10.0035

S U P P O R T I N G I N F O R M AT I O N
Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Bharadwaj C, Tripathi S,

Soren KR, et al. Introgression of “QTL-hotspot”
region enhances drought tolerance and grain yield in

three elite chickpea cultivars. Plant Genome. 2021;14

e20076. https://doi.org/10.1002/tpg2.20076

https://doi.org/10.1111/pbr.12077
https://doi.org/10.1186/s12870-018-1245-1
https://doi.org/10.1371/journal.pone.0027275
https://doi.org/10.1038/srep38636
https://doi.org/10.1038/srep38636
https://doi.org/10.1071/FP13318
https://doi.org/10.1186/s12870-015-0690-3
https://doi.org/10.1186/s12870-015-0690-3
https://doi.org/10.1371/journal.pone.0096758
https://www.preventionweb.net/files/11541_DroughtRiskReduction2009library.pdf
https://www.preventionweb.net/files/11541_DroughtRiskReduction2009library.pdf
https://doi.org/10.3389/fphys.2012.00179
https://doi.org/10.1007/s11032-011-9594-6
https://doi.org/10.1007/s11032-011-9594-6
https://doi.org/10.1016/j.plantsci.2015.09.009
https://doi.org/10.3835/plantgenome2013.07.0022
https://doi.org/10.3835/plantgenome2013.07.0022
https://doi.org/10.1016/j.pbi.2019.12.004
https://doi.org/10.1016/j.pbi.2019.12.004
https://doi.org/10.1038/nbt.2491
https://doi.org/10.1007/s00122-013-2230-6
https://doi.org/10.1007/s00122-013-2230-6
https://doi.org/10.1093/jxb/ery088
https://doi.org/10.1093/jxb/ery088
https://doi.org/10.1038/s41588-019-0401-3
https://doi.org/10.1093/jxb/ery187
https://doi.org/10.1093/jxb/ery187
https://doi.org/10.1186/1471-2164-10-523
https://doi.org/10.3835/plantgenome2013.10.0035
https://doi.org/10.3835/plantgenome2013.10.0035
https://doi.org/10.1002/tpg2.20076

	Introgression of “QTL-hotspot” region enhances drought tolerance and grain yield in three elite chickpea cultivars
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Selection of donor and recipient parents
	2.2 | Markers for foreground and background selection
	2.3 | Introgression of the QTL-hotspot genomic region into three genetic backgrounds
	2.4 | Phenotyping of MABC introgression lines
	2.5 | Statistical analysis

	3 | RESULTS
	3.1 | Marker polymorphism, foreground, and background selection
	3.2 | Introgression of the QTL-hotspot genomic region in elite chickpea cultivars
	3.2.1 | Introgression of the QTL-hotspot genomic region in Pusa 372
	3.2.2 | Introgression of the QTL-hotspot genomic region in Pusa 362 variety
	3.2.3 | Introgression of the QTL-hotspot genomic region in DCP 92-3 variety

	3.3 | Phenotypic evaluation of introgression lines
	3.3.1 | Performance of Pusa 372 ILs
	3.3.2 | Performance of Pusa 362 ILs
	3.3.3 | Performance of DCP 92-3 ILs


	4 | DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


