In last 10 years team CEG along with its collaborators and partners have published more than 350+ research articles in more than 43 high impact journals. 

Here’s the complete list of publications year wise. 

Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology 35: 969-976.
Whole-genome resequencing of 292 pigeon pea accessions identifies genomic regions associated with domestication and agronomic traits. Nature Genetics 49:1082-1088.
Genomic selection in plant breeding: Methods, models, and perspectives. Trends in Plant Science 22: 961–975. 
Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant 10:1047- 1064.
Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Molecular Plant 10: 309-322.
Indel-seq: a fast forward genetics approach for identification of trait associated putative candidate genomic regions and its application in pigeon pea (Cajanus cajan). Plant Biotechnology Journal 15: 906–914.
Development and evaluation of high-density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnology Journal doi:10.1111/pbi.12836
QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology Journal 15: 927–941.
Improving crop performance under drought – cross-fertilization of disciplines. Journal of Experimental Botany 68: 1393-1398.
Gene expression atlas of pigeon pea and its application to gain insights into genes associated with pollen fertility implicated in seed formation. Journal of Experimental Botany 68:2037-2054.
Deciphering Genomic Regions for High Grain Iron and Zinc Content Using Association Mapping in Pearl Millet. Frontiers in Plant Science 8:412.
Discovery of putative herbicide resistance genes and its regulatory network in chickpea using transcriptome sequencing. Frontiers in Plant Science 8: 958.
Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Frontiers in Plant Science 8:25.
Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of Sorghum (Sorghum bicolor L. Moench). Frontiers in Plant Science 8: 712.
Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Frontiers in Plant Science 8: 1209.
Genome-wide identification, characterization, and expression analysis of small RNA biogenesis purveyors reveal their role in regulation of biotic stress responses in three legume crops. Frontiers in Plant Science 8:488.
Introgression of shoot fly (Antherigona soccata L. Moench) resistance QTLs into elite post rainy season sorghum varieties using marker assisted backcrossing. Frontiers in Plant Science 8:1494.
Mapping QTLs Controlling Flowering Time, Plant Height, Panicle length and Grain Mass in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science 8:1731.
Molecular mapping of flowering time major genes and QTLs in chickpea (Cicer arietinum L.). Frontiers in Plant Science 8: 1140.
Food legumes and rising temperatures: effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to improve heat tolerance. Frontiers in Plant Science 8:1658.
Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Frontiers in Plant Science 8:794.
Towards defining heterotic gene pools using SSR markers in pearl millet [Pennisetum glaucum (L.) R. Br.]. Frontiers in Plant Science. doi: 10.3389/fpls.2017.01934
Metabolomics for plant improvement: status and prospects. Frontiers in Plant Science 8:1302.
Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization. Scientific Reports 7: 9659.
New hypervariable SSR markers for diversity analysis, hybrid purity testing and trait mapping in pigeonpea (Cajanus cajan (L.) Millspaugh]. Frontiers in Plant Science 8:377.
Characterization and mapping of Dt1 locus which co-segregates with CcTFL 1 for growth habit in pigeonpea. Theoretical and Applied Genetics 130: 1773-1784.
Construction of genotyping-by-sequencing based high-density genetic maps and QTL mapping for Fusarium wilt resistance in pigeonpea. Scientific Reports 7:1911.
Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58K SNPs for accelerating genetics and breeding in groundnut. Scientific Reports 7:40577.
Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Scientific Reports 7:43991.
Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports 7:1300.
Genotyping-by-sequencing of three mapping populations for identification of candidate genomic regions for resistance to sterility mosaic disease in pigeon pea. Scientific Reports 7: 1813.
Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics 18:58.
Genetic mitigation strategies to tackle agricultural GHG emissions: The case for biological nitrification inhibition technology. Plant Science 262: 165-168.
Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Molecular Genetics and Genomics 1:9.
Root traits confer grain yield advantages under terminal drought in chickpea (Cicer arietinum L.) Field Crops Research 201:146–161.
Genotypic variation in soil water use and root distribution and their implications for drought tolerance in chickpea. Functional Plant Biology 44:235-252.
Harnessing genetic diversity of wild Arachis species for genetic enhancement of cultivated peanut. Crop science doi:10.2135/ cropsci2016.10.0871
Draft genome sequence of Sclerospora graminicola, the pearl millet downy mildew pathogen. Biotechnology Reports 16: 18-20.
Genetic diversity analysis among inbred lines of Pearl millet [Pennisetum glaucum (L.) R. Br.] based on grain yield and yield component characters. International Journal of Current Microbiology and Applied Sciences 6: 2240-2250.
Genetic variability for downy mildew disease incidence against virulent downy mildew isolates in mapping population of Pearl millet. International Journal of Current Microbiology and Applied Sciences 6: 595-608.
SSR markers associated to early leaf spot disease resistance through selective genotyping and single marker analysis in groundnut (Arachis hypogaea L.). Biotechnology Reports 15:132-137.
The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics 48: 438–446.
Neglecting legumes has compromised human health and sustainable food production. Nature Plants 2: 16112.
Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of National Academy of Sciences (USA) 113: 6785-6790.
Genome-wide SNP genotyping resolves signatures of selection and tetrasomic recombination in peanut. Molecular Plant 10: 309–322.
First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping 1 populations. Plant Biotechnology Journal 14: 1673–1681.
Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnology Journal 14: 1563–1577.
Identification of low Ca2+ stress‐induced embryo apoptosis response genes in Arachis hypogaea by SSH‐associated library lift (SSHaLL). Plant Biotechnology Journal 14:682–698.
Multiple post-domestication origins of kabuli chickpea through allelic variation in a diversification-associated transcription factor. New Phytologist 211:1440-1451.
Global agricultural intensification during climate change: a role for genomics. Plant Biotechnology Journal 14: 1095- 1098.
QTL‐seq for rapid identification of candidate genes for 100‐ seed weight and root / total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal 14:2110-2119.
The evolution of photoperiod insensitive flowering in sorghum, a genomic model for Panicoid Grasses. Molecular Biology and Evolution 33: 2417-2428.
Dietary interventions for type 2 diabetes: How millet comes to help. Frontiers in Plant Science 7:1454.
Emerging genomic tools for legume breeding: current status and future prospects. Frontiers in Plant Science 7: 455.
Genomic tools in groundnut breeding program: status and perspectives. Frontiers in Plant Science 7:289.
Mapping quantitative trait loci controlling high iron and zinc content in self and open pollinated grains of pearl millet (Pennisetum galucum (L.) R. Br.). Frontiers in Plant Science 7:1636.
Transcriptome analysis of a new peanut seed coat mutant for the physiological regulatory mechanism involved in seed coat cracking and pigmentation. Frontiers in Plant Science 7:1491.
Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Scientific Reports 6:39478.
Genome wide transcriptome profiling of Fusarium oxysporum f sp. ciceris conidial germination reveals new insights into infection-related genes. Scientific Reports 6:37353.
Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici. Scientific Reports 6: 21367.
Oxidative stress and carbon metabolism influence Aspergillus flavus transcriptome composition and secondary metabolite production. Scientific Reports 6: 38747.
Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Reports 6: 38636.
Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports 6: 19228.
Responses of Aspergillus flavus to oxidative stress are related to fungal development regulator, antioxidant enzyme, and secondary metabolite biosynthetic gene expression. Frontiers in Microbiology 7:2048.
From Mendel’s discovery on pea to today’s plant genetics and breeding. Theoretical and Applied Genetics 129: 2267– 2280.
Whole genome re-sequencing reveals genome wide variations among parental lines of mapping populations in chickpea (Cicer arietinum). BMC Plant Biology 16:10.
Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 17:191.
Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet). Journal of Proteomics 143: 122–135.
Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Science 242: 98–107.
Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Science 242: 203–213.
Shoot traits and their relevance in terminal drought tolerance of chickpea (Cicer arietinum L.). Field Crops Research 197:10–27.
Deciphering transcriptional programming during pod and seed development using RNA-Seq in pigeonpea (Cajanus cajan). PLoS ONE 11: e0164959.
Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from Sun- Oleic 97R and NC94022. PLoS ONE 11: e0158452.
Development of a high-density linkage map and tagging leaf spot resistance in Pearl millet using genotyping-by-sequencing markers. The Plant Genome 9:1-13.
SSR genetic diversity assessment of popular pigeon pea varieties in Malawi reveals unique fingerprints. Journal of Biotechnology 21:65-71.
Accumulation of stem sugar and its remobilization in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay green loci. Plant Biology 19:396-405.
Component traits of plant water use are modulated by vapor pressure deficit in pearl millet (Pennisetum glaucum (L.)
R.Br.). Functional Plant Biology 43: 423-437.
Satellite imagery and household survey for tracking chickpea adoption in Andhra Pradesh, India. International Journal of Remote Sensing 37: 1955-1972.
QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209:147–156.
QTL mapping of Pearl millet rust resistance using an integrated DArT-and SSR-based linkage map. Euphytica 209:461-476.
Inheritance of protein content and its relationships with seed size, grain yield and other traits in chickpea. Euphytica 209:253–260.
Vernalization response in chickpea is controlled by a major QTL. Euphytica 207:453-461.
Evaluation of QTLs for Shoot Fly (Atherigona soccata) Resistance Component Traits of Seedling Leaf Blade Glossiness and Trichome Density on Sorghum (Sorghum bicolor) Chromosome SBI-10L. Tropical Plant Biology 9: 12-18.
Assessing the prospects of Streptomyces sp. RP1A-12 in managing groundnut stem rot disease caused by Sclerotium rolfsii Sacc. Journal of General Plant Pathology 82:96–104.
Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breeding 135: 355–366.
Identification of two major quantitative trait loci for fresh seed dormancy using the diversity arrays technology and diversity arrays technology-seq based genetic map in Spanish-type peanuts. Plant Breeding 135: 367–375.
Pigeonpea breeding in eastern and southern Africa: challenges and opportunities. Plant Breeding 135: 148-154.
Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Brazilian Journal of Microbiology 47:1.
Genomics, trait mapping and molecular breeding in pigeonpea and chickpea. Indian Journal of Genetics and Plant Breeding 76:501-511.
Hybrid pigeonpea: Accomplishments and challenges for the next decade. Legume Perspectives 11: 30-32.
Pigeonpea seed systems in Asia. Legume Perspectives 11: 44-45.
Pigeonpea-A unique jewel in rainfed cropping systems. Legume Perspectives 11: 8-10.
R&D for enhancing both horizontal and vertical expansion of pulses production. Pulse India 2: 26-2.
Strategies for pigeonpea improvement. Legume Perspectives 11: 50-51.
Technologies for intensification of production and uses of grain legumes for nutrition security. Proceedings of the Indian National Science Academy 82: 1541-1553.
An overview of chickpea research: From discovery to delivery. Pulse India 2: 22-25.
Analytical and decision support tools for genomics-assisted breeding. Trends in Plant Science 21:354-363.
Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proceedings of National Academy of Sciences (USA) 112:3213–13218.
Next-generation sequencing for identification of candidate genes for Fusarium wilt and sterility mosaic disease in pigeonpea (Cajanus cajan). Plant Biotechnology Journal 14: 1183-1194.
Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences 34:43-104.
Translational genomics in agriculture: some examples in grain legumes. Critical Reviews in Plant Sciences 34:169-194.
Gene expression and Yeast two-hybrid studies of a 1RMYB transcription factor mediating drought stress response in root tissues of chickpea (Cicer arietinum L.) Frontiers in Plant Science 6:1117.
Genome-enabled prediction models for yield related traits in chickpea. Frontiers in Plant Science 7:1666.
Genomics for greater efficiency in pigeon pea hybrid breeding. Frontiers in Plant Science 6:793.
Genomics-assisted breeding for boosting crop improvement in pigeonpea (Cajanus Cajan). Frontiers in Plant Science 50:1-12.
Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut (Arachis hypogaea L.) based on amplicon sequencing combined with high resolution melting (HRM) analysis. Frontiers in Plant Science 6:1068.
Identification and validation of selected universal stress protein domain containing drought-responsive genes in pigeon pea (Cajanus cajan L.). Frontiers in Plant Science 6:1065.
Selection and validation of housekeeping genes as reference for gene expression studies in pigeon pea (Cajanus cajan) under heat and salt stress conditions. Frontiers in Plant Science 10: e0122847.
Application of genomics-assisted breeding for generation of climate resilient crops: Progress and prospects. Frontiers in Plant Science 6:563.
Draft genome sequence of adzuki bean, Vigna angularis. Scientific Reports 5:8069.
Prioritization of candidate genes in “QTL-hotspot” region for drought tolerance in chickpea (Cicer arietinum L.). Scientific Reports 5:15296.
Proteomics and Metabolomics: two emerging areas for legume improvement. Frontiers in Plant Science 6:1116.
High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theoretical and Applied Genetics 128: 1039-1047.
MAGIC populations in crops: current status and future prospects. Theoretical and Applied Genetics 128: 999-1017.
Two key genomic regions harbor QTLs for salinity tolerance in ICCV 2 × JG 11 derived chickpea (Cicer arietinum L.) recombinant
inbred lines. BMC Plant Biology 15:124.
Analysis of genetic diversity and population structure of peanut cultivars and breeding lines from China, India and the US using SSR markers. Journal of Integrative Plant Biology 58:452-465.
The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Functional & Integrative Genomics 15: 27-46.
High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. Plant Science 235:46-57.
CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database 1–7.
Biological nitrification inhibition in sorghum: the role of sorgoleone production. Plant Soil 379: 325-335.
Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research 174:1-11.
Introgression of staygreen QTL’s for concomitant improvement of food and fodder traits in Sorghum bicolor. Field Crops Research 180: 228-237.
Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs. Genetics Selection Evolution 47: 1-14.
Scope for improvement of yield under drought through the root traits in chickpea (Cicer arietinum L.). Field Crops Research 174:47-54.
Evaluation and validation of housekeeping genes as reference for gene expression studies in pigeon pea (Cajanus cajan) under drought stress conditions. PLoS ONE 10: e0122847.
Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLOS One 10: e0122165.
NGS-QCbox and raspberry for parallel automated and rapid quality control analysis of large-scale next generation sequencing (illumina) data. PLOS One 10: e0139868.
Exploring Potential of Pearl Millet Germplasm Association Panel for Association Mapping of Drought Tolerance Traits. PLoS ONE 10: 1-28.
Association of nad7a gene with cytoplasmic male sterility in pigeonpea (Cajanus cajan). The Plant Genome 8:1-12.
Population genetics and structure of a global foxtail millet germplasm collection. The Plant Genome 8: 1-13.
Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiology and Biochemistry 94:104–113.
Association analysis of low-phosphorus tolerance in West African pearl millet using DArT markers. Molecular Breeding 35:171.
Quantitative trait loci associated with constitutive traits control water use in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Biology 17:1073-1084.
Allelic relationships of flowering time genes in chickpea. Euphytica 203:295–308.
Detection of a new QTL/gene for growth habit in chickpea CaLG1 using wide and narrow crosses. Euphytica 204:473– 485.
Development of a new CMS system in pigeonpea utilizing crosses with Cajanus lanceolatus (WV Fitgz) van der Maesen. Euphytica 204:289–302.
Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (Cicer arietinum L.). Euphytica 205: 381-394.
Identification of quantitative trait loci for yield and yield related traits of groundnut (Arachis hypogaea L.) under different
water regimes in Niger and Senegal. Euphytica 206: 631-647.
Imputation of single nucleotide polymorphism genotypes in biparental, backcross, and topcross populations with a hidden markov model. Crop Science 55:1934-1946.
Validation of markers linked to late leaf spot and rust resistance, and selection of superior genotypes among diverse recombinant inbred lines and backcross lines in peanut. Euphytica 204: 343–351.
Mitochondrial SSRs and their utility in distinguishing wild species, CMS lines and maintainer lines in pigeon pea (Cajanus cajan L.). Euphytica 6:793
Compilation of an informative microsatellite set for genetic characterization of East African finger millet (Eleusine coracana).
Electronic Jr of Biotechnology 18:77-82.
Patterns of molecular diversity in current and previously developed hybrid parents of pearl millet [Pennisetum glaucum (L.) R. Br.]. American Journal of Plant Sciences 6: 1697- 1712.
Marker-trait association study for protein content in chickpea (Cicer arietinum L.). Journal of Genetics 94:279-286.
The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp.
in chickpea. Springer Plus 4:31.
Biotechnological Approaches to Evolve Sorghum (Sorghum bicolor L. Moench) for Drought Stress Tolerance and Shoot
fly Resistance. Current Trends in Biotechnology and Pharmacy 9: 257–264.
Chickpea translational genomics in the ‘whole genome’ era. Legume Perspectives 7: 7-9.
Combining ability of some sorghum lines for dry lands and sub-humid environments of East Africa. African Journal of
Agricultural Research 10: 2048-2060.
Evaluation of Broad-Spectrum Streptomyces sp. for Plant Growth Promotion Traits in Chickpea (Cicer arietinum L.). Philippine Agricultural Scientist 98:270–278.
Evaluation of Streptomyces sp. obtained from herbal vermicompost for broad spectrum of plant growth-promoting activities in chickpea. Organic Agriculture 5:123-133.
Genome-environment associations in sorghum landraces predict adaptive traits. Science Advances 1: e1400218.
Heterosis for yield and its components in sorghum (Sorghum bicolor L. Moench) hybrids in dry lands and sub-humid
environments of East Africa. Australian Journal of Crop Science 9: 9-13.
Resistance to Aspergillus flavus in maize and peanut: Molecular biology, breeding, environmental stress, and future perspectives. The Crop Journal, Special Issue: Breeding to Optimize Agriculture in a Changing World 3:229-237.
The role of vegetables and legumes in assuring food, nutrition, and income security for vulnerable groups in Sub-Saharan Africa. World Medical & Health Policy 7:187-210.
Genome sequence of mungbean and insights into evolution within Vigna species. Nature Communications 5:5443.
Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biology 15 R39:1-13.
Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biology 12: e1001883.
A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies. Plant Biotechnology Journal 12: 778–786.
Further evidence that a terminal drought tolerance QTL of pearl millet is associated with reduced salt uptake. Environmental and Experimental Botany 102: 48-57.
Allelic diversity and association analysis for candidate abiotic stress responsive genes with drought tolerance in chickpea. Frontiers in Plant Science 5:248.
Molecular genetics and genomics of abiotic stress responses. Frontiers in Plant Science 5: 398.
Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.) Theoretical and Applied Genetics 127: 2663-2678.
Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) Theoretical and Applied Genetics 127:445-462.
Genomics-assisted breeding in the major pulse crops of developing countries: Present status and prospects. Theoretical and Applied Genetics 127:1263-1291.
Mapping and identification of a Cicer arietinum NSP2 gene involved in nodulation pathway. Theoretical and Applied Genetics 127:481-488.
Marker-assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and Applied Genetics 127: 1771-1778.
Structural variation in plant genomes. Briefings in Functional Genomics 13: 296-307.
Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.). BMC Genomics 15:454.
Identification of ERF genes in peanuts and functional analysis of AhERF008 and AhERF019 in abiotic stress response. Functional & Integrative Genomics 14: 467-477.
Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.). Functional & Integrative Genomics 14: 59-73.
Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Molecular Biology 85:395–409.
Genome-wide association study of grain polyphenol concentrations in global Sorghum [Sorghum bicolor (L.) Moench] germplasm. Journal of agricultural and food chemistry 62:10916-27.
Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiological Research 169:40–48.
Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Molecular Genetics and Genomics 290:559-571.
Comprehensive transcriptome assembly of chickpea (Cicer arietinum l.) using Sanger and next generation sequencing platforms: development and applications. PLoS ONE 9: e86039.
An Integrated SNP mining and utilization (ISMU) pipeline for next generation sequencing data. PLoS ONE 9: e101754.
Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers. PLoS ONE 9: e102016.
Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS ONE 9: e96758.
Genetic diversity and demographic history of Cajanus spp. illustrated from genome-wide SNPs. PLoS ONE 9: e88568.
Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS ONE 9:e10522.
Marker-assisted backcrossing to introgress resistance to Fusarium wilt (FW) race 1 and Ascochyta blight (AB) in C 214, an elite cultivar of chickpea. The Plant Genome 7: 1–11.
CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics 15:212.
Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genetics 15:133.
Genomics-assisted breeding for drought tolerance: a dream comes true in chickpea! Functional Plant Biology 41:1178-1190.
Modelling the effect of plant water use traits on yield and stay-green expression in sorghum. Functional Plant Biology 41: 1019-1034.
Development of a set of chromosome segment substitution lines in Pearl millet [Pennisetum glaucum (L.) R. Br.]. Crop Science 54: 2175-2182.
Multiple resistant and nutritionally dense germplasm identified from mini core collection in peanut. Crop Science 54:679-693.
Population structure and linkage disequilibrium of ICRISAT foxtail millet (Setaria italica (L.) P. Beauv.) core collection. Euphytica 196:423-435.
Phylogenetic diversity of Mesorhizobium in chickpea. Journal of Biosciences 39:513-517.
Development of NILs from heterogeneous inbred families for validating the rust resistance QTLs in peanut (Arachis hypogaea L.). Plant Breeding 133: 80-85.
Cloning, expression pattern analysis and subcellular localization of resveratrol synthase gene in peanut (Arachis hypogaea L.). American Journal of Plant Sciences 5: 3619-3631.
Enhancement of the use and impact of germplasm in crop improvement. Plant Genetic Resources: Characterization and Utilization 12: S155-S159.
A SSR kit to study genetic diversity in chickpea (Cicer arietinum L.). Plant Genetic Resources: Characterization and Utilization 9:1414-1420.
Genomics of plant genetic resources: a gateway to a new era of global food security. Plant Genetic Resources: Characterization and Utilization 12: S2-S5.
Association Analysis of SSR Markers with Phenology, Grain, and Stover-Yield Related Traits in Pearl Millet (Pennisetum glaucum (L.) R. Br.). The Scientific World Journal 562327:1-15.
Diversification of primary gene pool through introgression of resistance to foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). The Crop Journal 2:110–119.
Genome-based analysis of the transcriptome from mature chickpea root nodules. Plant Genetics and Genomics 5: 325.
Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nature Biotechnology 31:240–246.
Agriculture: Feeding the future. Nature 499:23–24.
Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnology Advances 31:1120-1134.
Population genomic and genome-wide association studies of agroclimatic traits in sorghum. PNAS 110: 453-458.
Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four cajanus genotypes. DNA Research 20:485-495.
Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Research 20:173-184.
Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Frontiers in Plant Science 4:309.
Groundnut improvement: use of genetic and genomic tools. Frontiers in Plant Science 4:23.
Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. Journal of Integrative Plant Biology 67: 467-481.
Pearl millet [Pennisetum glaucum (L.) R. Br.] consensus linkage map constructed using four RIL mapping populations and newly developed EST-SSRs. BMC Genomics 14:159.
Biological nitrification inhibition (BNI) activity in sorghum and its characterization. Plant and Soil 366: 243-259.
Traits of relevance to improve yield under terminal drought stress in chickpea (C. arietinum L.). Field Crops Research 145:88–95.
The peanut genome consortium and peanut genome sequence: creating a better future through global food security. Phytopathology 103:183-184.
Partitioning coefficient—A trait that contributes to drought tolerance in chickpea. Field Crops Research 149:354–365.
Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 3: 2085-2094.
Exploiting genomic resources for efficient conservation and use of chickpea, groundnut, and pigeonpea collections for crop improvement. The Plant Genome 6:1–11.
Fast-track introgression of “QTL-hotpsot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome 6:1–26.
Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). The Plant Genome 1-28.
Genetic mapping and quantitative trait loci analysis for disease resistance using f and f generation-based genetic maps derived from ‘Tifrunner’בGT-C20’in peanut. The Plant Genome 6: 3-12.
Legume genomics: from genomic resources to molecular breeding. The Plant Genome 6:1-7.
Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. The Plant Genome doi:10.3835/plantgenome2013.05.0017.
Single nucleotide polymorphism–based genetic diversity in the reference set of peanut (spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome 6(3).
Legume biology: the basis for crop improvement. Functional Plant Biology 40:v-viii.
Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Functional Plant Biology 40:1350-1361.
Functional genomics to study stress responses in crop legumes: Progress and prospects. Functional Plant Biology 40:1221-1233.
Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (Cicer arietinum L.). Euphytica 193:121-133.
Development and use of molecular markers for crop improvement. Plant Breeding 132: 431-432.
ICPH 2671 – the world’s first commercial food legume hybrid. Plant Breeding 132: 479–485.
Whole-genome scanning for mapping determinacy in Pigeonpea (Cajanus spp.) Plant Breeding 132:472–478.
Evaluation of genetic diversity in Magnaporthe grisea populations adapted to finger millet using simple sequence repeats (SSRs) markers. Physiological and Molecular Plant Pathology 84: 10-18.
Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiology and Molecular Biology of Plants 19:409-19.
Construction of Genetic Linkage Map and QTL Analysis of Sink-Size Traits in Pearl Millet (Pennisetum glaucum). ISRN Genetics 2013:1-14.
Molecular diversity among wild relatives of Cajanus cajan (L.) Millsp. African Journal of Biotechnology 12:3797-3801.
Pest and diseases: Old and new threats-Modern breeding tools to tailor new crop cultivars. Sécheresse 24: 261-273.
Recent advances in molecular genetic linkage maps of cultivated peanut. Peanut Science 40: 95-106.
Can genomics boost productivity of orphan crops? Nature Biotechnology 30:1172–1176.
Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nature Biotechnology
Advances in Arachis genomics for peanut improvement. Biotechnology Advances 30: 639–651.
A comprehensive transcriptome assembly of pigeon pea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms. Molecular Plant 5: 1020-1028.
Deep sequencing analysis of the transcriptomes of peanut aerial and subterranean young pods identifies candidate genes related to early embryo abortion. Plant Biotechnology Journal 11: 115-127.
Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnology Journal 10:716-732.
Large-scale development of cost-effective single-nucleotide polymorphism marker assays for genetic mapping in pigeon pea and comparative mapping in legumes. DNA Research 19: 449-461.
An intra-specific consensus genetic map of pigeon pea [Cajanus cajan (L) Millspaugh] derived from six mapping populations. Theoretical and Applied Genetics 125:1325–1338.
Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theoretical and Applied Genetics 125:625–645.
Next-generation sequencing technologies: opportunities and obligations in plant genomics. Briefings in Functional Genomics 11:1-2.
Current state-of-art of sequencing technologies for plant genomics research. Briefings in Functional Genomics 11: 3-11.
Phenotyping chickpeas and pigeonpeas for adaptation to drought. Frontiers in Physiology doi: 10.3389/fphys.2012.00179.
Phenotyping Pearl millet for adaptation to drought. Frontiers in Physiology 3:386.
Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biology 12:10.
Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC Plant Biology 12:9.
Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. American Journal of Botany 99:186-192.
Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L.). Field Crops Research 126:171–180.
An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.) PLoS ONE 7: e41213.
Genetic patterns of domestication in pigeon pea (Cajanus cajan (L.) Millsp.) and wild Cajanus relatives. PLoS ONE 7: e39563.
Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components. Molecular Breeding 30:9-12.
Quantitative trait locus analysis and construction of consensus genetic map for foliar disease resistance based on two recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Molecular Breeding 30:773–788.
Quantitative trait locus analysis and construction of consensus genetic map for drought tolerance traits based on three recombinant inbred line populations in cultivated groundnut (Arachis hypogaea L.). Molecular Breeding 30:757–772.
Water saving traits co-map with a major terminal drought tolerance quantitative trait locus in pearl millet [Pennisetum glaucum (L.) R. Br.]. Molecular Breeding 30: 1337-1353.
Genetic diversity in maintainer and restorer lines of Pearl millet. Crop Science 52: 2555-2563.
Identification of dominant and recessive genes for resistance to Fusarium wilt in pigeonpea and their implication in breeding hybrids. Euphytica 188: 221-227.
Evidence of a unique inter-allelic epistatic interaction for seed coat color in pigeonpea [Cajanus cajan (L.) Millspaugh]. Euphytica 186:813-816.
Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Biosciences 37: 811–820.
Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breeding 131:139-147.
Differences between Cajanus cajan (L.) Millspaugh and C. cajanifolius (Haines) van der Maesen, the progenitor species of pigeonpea. Genetic Resources and Crop Evolution 59:411–417.
Identification of unique alleles and assessment of genetic diversity of rabi sorghum accessions using simple sequence repeat markers. Journal of Plant Biochemistry and Biotechnology 20:74-83.
Assessing genetic diversity, allelic richness and genetic relationship among races in ICRISAT Foxtail millet core collection. Plant Genetic Resources: Characterization and Utilization 10: 214–223.
Molecular and morphological diversity in Rhizoctonia bataticola isolates causing dry root rot of chickpea (Cicer arietinum L.) in India. African Journal of Biotechnology 11:8949-8959.
Postrainy season sorghum: Constraints and breeding approaches. Journal of Semi-Arid Tropical Agricultural Research 10:1-12.
Synteny relationships among the linkage groups of chickpea (Cicer arietinum L.). Journal of Food Legumes 24: 91-95.
Genetic architecture of purple pigmentation and tagging of some loci to SSR markers in pearl millet, Pennisetum glaucum (L.) R. Br. Genetics and Molecular Biology 35: 106-118.
Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199-221.
Characterization of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). The European Journal of Plant Science and Biotechnology 6: 71-75.
Within-line Genetic Variation for Quantitative Characters and SSRs in Long-time Maintained Inbreds in Pearl Millet [Pennisetum glaucum (L.) R. Br.]. The European Journal of Plant Science and Biotechnology 6: 109-113.
Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science 16: 363- 371.
Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnology Journal 9:922–931.
Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Research 18:153-164.
Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics 122:1119–1132.
Development of a molecular linkage map of pearl millet integrating DArT and SSR markers. Theoretical and Applied Genetics 123:239-250.
Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.) Theoretical and Applied Genetics 122:1577–1589.
Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment
in pigeonpea (Cajanus spp.). BMC Plant Biology 11:56.
Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biology 11:70.
Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus Cajan (L.) Millspaugh]. BMC Plant Biology 11:17.
Single feature polymorphisms (SFPs) for drought tolerance in pigeonpea [Cajanus cajan (L.) Millspaugh]. Functional & Integrative Genomics 11:651–657.
Genetic mapping and quantitative trait locus analysis of resistance to sterility mosaic disease in pigeonpea [Cajanus cajan (L.) Millsp.]. Field Crops Research 123: 53-61.
Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Research 122: 49-59.
Novel SSR markers from BAC-End sequences, DArT arrays and a comprehensive genetic map with 1,291 marker loci for chickpea (Cicer arietinum L.). PLoS ONE 6: e27275.
Consistent variation across soil types in salinity resistance of a diverse range of chickpea (Cicer arietinum L.) genotypes. Journal of Agronomy and Crop Science 197:214–227.
Stay-green quantitative trait loci effects on water extraction, transpiration efficiency and seed yield depend on recipient parent background. Functional Plant Biology 38:553-566.
Characterization and genetic diversity analysis of selected chickpea cultivars of nine countries simple sequence repeat (SSR) markers. Crop and Pasture Science 62:177-187.
Identification and characterization of toxigenic Fusaria associated with sorghum grain mold complex in India. Mycopathologia 171:223-230.
Genetics of fertility restoration in A4 based diverse maturing hybrids in pigeonpea [Cajanus cajan (L.) Millsp.]. Crop Science 51: 574-578.
Mapping QTL for resistance to botrytis grey mould in chickpea. Euphytica 182:1–9.
Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. Journal of Plant Biology 37:1–16.
Progress in the utilization of Cajanus platycarpus (Benth.) Maesen in pigeonpea improvement. Plant Breeding 130:507-514.
Characterization of AhMITE1 transposition and its association the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Systematics and Evolution 291:153–158.
Genomic diversity among sorghum genotypes with resistance to sorghum shoot fly, Atherigona soccata. Journal of Plant Biochemistry and Biotechnology 8:1494.
Pigeonpea composite collection and identification of germplasm for use in crop improvement programmes. Plant Genetic Resources: Characterization and Utilization 9:97-108.
Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources: Characterization and Utilization 9:59-69.
Genomics of plant genetic resources: an introduction. Plant Genetic Resources: Characterization and Utilization 9: 151–154
Genomic tools and germplasm diversity for chickpea improvement. Plant Genetic Resources: Characterization and Utilization 9:45-58.
First genetic map of pigeonpea based on Diversity Array Technology (DArT) markers. Journal of Genetics 90:103- 109.
More genomic resources for less-studied crops. Trends in Biotechnology 28: 452-460 (Cover article).
Accessing genetic diversity for crop improvement. Current Opinion in Plant Biology 13:167–73.
From genome studies to agricultural biotechnology: closing the gap between basic plant science and applied agriculture. Current Opinion in Plant Biology 13:115-118.
Salt sensitivity in chickpea. Plant Cell and Environment 33: 490-509.
Comparative analysis of the grain proteome fraction in barley genotypes with contrasting salinity tolerance during germination. Plant Cell and Environment 33: 211-222.
Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany 61: 369-377.
Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theoretical and Applied Genetics 120:1415–1441.
A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics 121: 971–984.
Genetic relationships among 7 sections of genus Arachis studied by using SSR markers. BMC Plant Biology 10:15.
The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biology 10:45.
Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus Cajan (L.) Millspaugh. Molecular
Breeding 26:371-380.
Features of SNP and SSR diversity in a set of ICARDA barley germplasm collection. Molecular Breeding 26:229-242.
In silico mapping of important genes and markers available in the public domain for efficient sorghum breeding. Molecular Breeding 26:409-418.
Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Molecular Breeding 26:393–408.
Quantitative genetics and plant genomics: an overview. Molecular Breeding 26:133–134.
Genetics of Ascochyta blight resistance in chickpea. Euphytica 171:337-343.
A comparative assessment of the utility of PCR-based marker systems in pearl millet. Euphytica 174: 253-260.
Simple sequence repeat-based diversity in elite pigeonpea genotypes for developing mapping populations to map resistance to Fusarium wilt and sterility mosaic disease. Plant Breeding 129:135-141.
Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breeding 129:125–134.
Novel SSR markers for polymorphism detection in pigeonpea (Cajanus spp.). Plant Breeding 129:142–148.
Challenges and strategies for next generation sequencing (NGS) data analysis. Journal of Computer Science & System Biology 3: 040-042.
SSR allelic diversity in relation to morphological traits and resistance to grain mold in sorghum. Crop & Pasture Science 61: 230-240.
Genetic Enhancement for Superior Food-Feed Traits in a Pearl Millet (Pennisetum glaucum (L.) R. Br.) Variety by Recurrent
Selection. Animal Nutrition and Feed Technology 10S: 61-68.
Legume genomics and breeding. Plant Breeding Reviews 33:257-304
Characterization of pathogenic and molecular diversity in Sclerospora graminicola, the causal agent of pearl millet downy mildew. Archives of Phytopathology and Plant Protection 43:538–551.
Towards genomics-assisted crop improvement in SAT legumes. NAAS Newsletter (April-June) 10: 1-4.
Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends in Biotechnology 27: 522-30
Orphan legume crops enter the genomics era! Current Opinion in Plant Biology 12: 202–210.
Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. Journal of Experimental Botany 60:3531-3544.
The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics 118: 729-739.
Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biology 9: 112.
A comprehensive resource of drought- and salinity- responsive ESTs for gene discovery and marker development in chickpea (Cicer arietinum L.) BMC Genomics 10:523.
Isolation and sequence analysis of DREB2A homologues in three cereal and two legume species. Plant Science 177: 460-467.
Multilocus variable number tandem repeat analysis as a tool to discern genetic relationships among strains of Yersinia enterocolitica biovar 1A. Journal of Applied Microbiology 107: 875 – 884.
Hierarchical Multiple-Factor Analysis for Classifying Genotypes Based on Phenotypic and Genetic Data. Crop Science 50:105-117.
Assessment and comparison of AFLP and SSR based molecular genetic diversity in Indian isolates of Ascochyta rabiei, a causal agent of Ascochyta blight in chickpea (Cicer aeritinum L.). Mycological Progress 8: 87-97.
High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers. Plant Breeding 128:86-94.
Novel genomic tools and modern genetic and breeding approaches for crop improvement. Journal of Plant Biochemistry and Biotechnology 18: 127-138.
Perl module and PISE wrappers for the integrated analysis of sequence data and SNP features. BMC Research Notes 2:92.
SSR allele frequency changes in response to recurrent selection for pearl millet grain yield and other agronomic traits. Journal of SAT Agricultural Research 7:8.
Novel set of groundnut SSRs for genetic diversity and interspecific transferability. International Journal of Integrative Biology 7: 100-106.
Genetic diversity in Indian isolates of Fusarium oxysporum f. sp. ciceris, chickpea wilt pathogen. African Journal of Biotechnology 8: 1016-1023.
A minute P application contributes to a better establishment of pearl millet (Pennisetum glaucum (L.) R. Br.) seedling in P deficient soils. Soil Use and Management 1: 1-8.
Development and mapping of simple sequence repeat markers for Pearl millet from data mining of expressed sequence tags. BMC Plant Biology 8:119.
Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biology 8: 106.
Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (Arachis hypogaea). BMC Plant Biology 8: 55.
Chickpea improvement: Role of wild species and genetic markers. Biotechnology and Genetic Engineering Reviews 25: 267-314.
Potential for using morphological, biochemical, and molecular markers for resistance to insect pests in grain legumes. Journal of Food Legumes 21: 211-217.
In silico development of simple sequence repeat markers within the aeschynomenoid/ dalbergoid and genistoid clades of the Leguminosae family and their transferability to Arachis hypogaea, groundnut. Plant Science 174: 51-60.
Large variation in salinity tolerance is explained by differences in the sensitivity of reproductive stages in chickpea. Field Crops Research 104: 123–129.
Quantitative trait loci for grain yield in pearl millet under variable post flowering moisture conditions. Crop Science 47: 969-980.
Differential Responses of Proline, Ion Accumulation and Antioxidative Enzyme Activities in pearl millet [Pennisetum glaucum (L.) R. Br.] lines Differing in Salt Sensitivity. Journal of Plant Biology 34: 185-192.
An integrated pipeline of open source software adapted for multi – CPU architectures: use in the large-scale identification of single nucleotide polymorphisms. Comparative and Functional Genomics Article ID 35604.
Molecular identification of genetically distinct accessions in the USDA chickpea core collection. Pisum Genetics 39: 32-33.
Development of cost-effective SNP assays for chickpea genome analysis and breeding. Journal of SAT Agriculture 3:1-3.
Visit Us On FacebookVisit Us On TwitterVisit Us On Youtube